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[1] With time-lapse electrical resistivity tomography (ERT), transport processes in the
subsurface can be imaged and monitored. The information content of obtained
spatiotemporal data sets opens new ways to characterize subsurface spatial variability.
Difficulties regarding a quantitative interpretation of the imaged transport may arise from
the fact that data inversion used in ERT is generally underdetermined and that ERT data
acquisition is often limited to two-dimensional (2-D) image planes. To address this
problem, we conducted a numerical tracer experiment in a synthetic heterogeneous aquifer
with preset variability and spatial correlation of the hydraulic conductivity and monitored
the tracer breakthrough in a 2-D image plane perpendicular to the mean flow direction
using time-lapse ERT. The tracer breakthrough patterns in the image plane were
interpreted using equivalent transport models: an equivalent convection dispersion
equation to characterize the spatially averaged breakthrough and a stream tube model to
characterize local breakthrough curves. Equivalent parameters derived from simulated and
from ERT inverted concentrations showed a good agreement, which demonstrates the
potential of ERT to characterize subsurface transport. Using first-order approximate
solutions of stochastic flow and transport equations, equivalent model parameters and their
spatial variability were interpreted in terms of the local-scale dispersion and the spatial
variability of the hydraulic conductivity. The spatial correlations of the stream tube
velocity and of the hydraulic conductivity were found to be closely related. Consequently,
the hydraulic conductivity spatial correlation may be inferred from stream tube velocity
distributions, which can be observed with sufficiently high spatial resolution using ERT.
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1. Introduction

[2] Tomographic geophysical techniques are attractive
for characterizing the structure and heterogeneity of the
subsurface since spatially continuous images of subsurface
properties can be obtained with minimal disturbance.
Flow and transport processes are strongly determined by
the structure and heterogeneity of subsurface transport
properties, especially the hydraulic conductivity. Therefore
geophysical methods are increasingly being used in
hydrogeological studies and the field of ‘‘hydrogeophysics’’
is emerging [Hubbard and Rubin, 2004]. Geophysical
methods map the spatial distribution of geophysical
parameters. Using petrophysical relations between geo-
physical and hydrological parameters [e.g., Slater and
Lesmes, 2002; Lesmes and Friedman, 2004], hydraulic
structures may be derived directly. More sophisticated
methods making use of geostatistical techniques have
been developed to combine geophysical and hydrological
data of different spatial support and to characterize

subsurface structure in either a direct or geostatistical way
[e.g., Rubin et al., 1992; Ezzedine et al., 1999; Hubbard
et al., 1999; Purvance and Andricevic, 2000].
[3] Besides imaging of ‘‘static’’ subsurface structures,

geophysical methods have also been used to monitor
subsurface flow and transport processes. A number of
studies have illustrated the potential of ERT for monitoring
tracer experiments in soils [e.g., Binley et al., 1996, 2002;
Slater et al., 1997; French et al., 2002] and aquifers [e.g.,
Slater et al., 2000; Kemna et al., 2002; Singha et al., 2003].
The spatiotemporal information that is obtained using ERT
monitoring can be used to calibrate flow and transport
models. Binley et al. [2002] estimated the effective hydrau-
lic conductivity from a controlled water infiltration test in
the vadose zone that was monitored using cross-borehole
ERT and transmission radar tomography. Kemna et al.
[2002] estimated effective dispersivity and tracer velocities
from a salt tracer breakthrough that was monitored across a
reference plane using cross-borehole ERT.
[4] However, for a quantitative interpretation of ERT

images in terms of hydraulic and transport parameters,
two aspects need further consideration. First, ERT repre-
sents an inherently nonunique inverse problem. Usually, a
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regularization term is added to the data misfit term in the
objective function to constrain the inversion problem. A
variety of regularization terms can be used and their choice
is not based on the ERT data but on other a priori
information, best guesses, and/or experience. Because of
limited data acquisition and computational resources, ERT
data are commonly collected along a 2-D profile or image
plane and then inverted assuming that the medium is
invariant in the third direction. As a consequence, both
the 2-D representation of an actually 3-D distribution of
electrical subsurface properties and the required regulariza-
tion term lead to an uncertainty in the inverted image which
is not generated by data error or noise. Kemna et al. [2002]
illustrated the effect of using different regularizations on
estimated equivalent transport parameters for a regular 2-D
tracer distribution. However, their analysis did not take into
account the 2-D approximation of a 3-D conductivity
distribution.
[5] Second, transport parameters that are derived from

2-D ERT images are equivalent parameters of models which
represent a simplification of the heterogeneous 3-D flow and
transport process. A characterization of the subsurface
hydraulic property distribution based on ERT monitored
tracer experiments requires therefore a relationship between
equivalent transport parameters and the spatial distribution
of the hydraulic properties. The actual or conditioned spatial
distribution of the hydraulic properties in the tracer test area
can be inferred from measured hydraulic state variables
and equivalent transport parameters using an inversion of
the 3-D flow and transport equations [e.g., Harvey and
Gorelick, 1995; Yeh and Simunek, 2002]. However, since
the process that is observed in a 2-D image plane perpen-

dicular to the mean flow direction represents the lumped
result of a 3-D transport process between the injection and
image plane, a 3-D inversion based on basically 2-D lumped
information is prone to be underdetermined. Rather than
attempting to derive the actual spatial distribution of the
hydraulic properties, the geostatistical parameters that
characterize this spatial distribution in a stochastic frame-
work could be derived from equivalent transport parameters
observed in a 2-D image plane. Relationships between
equivalent transport parameters and geostatistical parameters
have been derived using first-order approximate solutions of
the stochastic flow and transport equations. The variance
dissipation of local concentrations or the dilution [e.g.,
Kapoor and Kitanidis, 1998; Pannone and Kitanidis,
1999; Fiori and Dagan, 2000; Cirpka and Kitanidis, 2000;
Vanderborght and Vereecken, 2002], the spatial correlation
of particle arrival times on a reference plane [Rubin and
Ezzedine, 1997; Vanderborght and Vereecken, 2001; Bellin
and Rubin, 2004], and the spatial covariance of the concen-
tration field [Vanderborght, 2001] were related to the spatial
covariance of the hydraulic conductivity field and the local-
scale dispersion. Information about travel time distributions
and spatial covariances of travel times was used by, for
example, Woodbury and Rubin [2000], Vanderborght and
Vereecken [2001, 2002], and Bellin and Rubin [2004] to infer
geostatistical parameters and local-scale dispersion from
tracer tests. In these studies, tracer breakthrough was
measured using multilevel groundwater samplers. However,
because of sparse sampling in the horizontal direction, the
spatial resolution that can be obtained with these methods is
limited so that the inferred correlation scale in the flow
direction is uncertain.

Figure 1. Information flowchart. Data sets and parameters are shown in boxes, and operations
performed on a data/parameter set are represented by italicized text. Thick dashed lines represent
comparisons between information derived from ERT data sets and from simulated concentration or bulk
electrical conductivity data sets.
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[6] The overall objective of this study is to investigate the
potential of ERT to obtain spatiotemporal information about
tracer transport across a reference plane in a heterogeneous
aquifer and to illustrate how this information can be used to
characterize aquifer heterogeneity in terms of geostatistical
parameters. We conducted a numerical tracer experiment in
a synthetic heterogeneous aquifer with a preset variability
and spatial correlation structure of the hydraulic conductiv-
ity and monitored the tracer breakthrough across a 2-D
image plane perpendicular to the mean flow direction using
time-lapse ERT. The tracer breakthrough patterns on refer-
ence planes are parameterized using equivalent transport
models. First-order approximate solutions of stochastic flow
and transport equations are used to interpret these equiva-
lent parameters in terms of the local-scale dispersion and the
spatial variability of the hydraulic conductivity. An infor-
mation flowchart showing the links between different data
and parameter sets and the operations performed on them is
given in Figure 1.

2. Theory

2.1. Three-Dimensional Flow and Transport Equations

[7] Assuming a sink/source free domain and an incom-
pressible medium, the hydraulic head distribution in an
aquifer is obtained by solving the 3-D flow equation for
given boundary conditions:

r � Ks xð Þry xð Þð Þ ¼ 0 ð1Þ

where Ks(x) is the hydraulic conductivity, which is assumed
to be isotropic at the local scale and represented by a scalar,
and y(x) is the hydraulic head. From the hydraulic head
field, the Darcy flow velocity, q(x), is derived:

q xð Þ ¼ �Ks xð Þry xð Þ ð2Þ

Transport of a nonreactive tracer in the 3-D flow field q(x)
is described using the convection dispersion equation
(CDE):

f0

@C x; tð Þ
@t

¼ �q xð ÞrC x; tð Þ þ r � f0Dd xð ÞrC x; tð Þð Þ ð3Þ

where C(x, t) is the solute concentration in the liquid phase,
and Dd(x) is the local-scale dispersion tensor and f0 is the
water filled pore space which we assume to be constant in
space. According to Bear [1972], the entries of the
dispersion tensor can be expressed as

Dd;ij xð Þ ¼ dijt f0ð ÞD0 þ dijldT kuk þ ldL � ldTð Þ uiujkuk ð4Þ

where dij is the Kronecker delta, t(f0) is a tortuosity factor,
D0 the molecular diffusion constant, u the pore water
velocity (u = q/f0), and ldL and ldT the longitudinal and
transverse dispersivities, respectively.

2.2. Representation of Heterogeneity

[8] Since the deterministic spatial distribution of hydrau-
lic conductivity, Ks, is generally not known, it is regarded as
a stochastic parameter and its spatial variation is expressed
in a geostatistical framework. Several data sets suggest that

the distribution of Ks is described by a lognormal distribu-
tion [e.g., Gelhar, 1993]. The spatial variability of logeKs(x)
is represented by a random space function which is assumed
to be a second-order stationary Gaussian random field, i.e.,
the expected value and the two point covariance of
logeKs(x), are defined and translation invariant:

loge Ks xð Þh i ¼ loge Ks x0ð Þh i � F ð5Þ

loge Ks xð Þ � Fð Þ loge Ks xþ hð Þ � Fð Þh i � f xð Þf xþ hð Þh i
¼ f x0ð Þf x0 þ hð Þh i � Cff hð Þ ð6Þ

where hyi represents the expected value of the random
variable in all realizations, h is the separation lag, and
Cff (h) is the spatial covariance of the logeKs or its pertur-
bation f. An exponential covariance function Cff (h) is
assumed:

Cff hð Þ ¼ s2f exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1

g1

� �2

þ h2

g2

� �2

þ h3

g3

� �2
s0

@
1
A ð7Þ

where sf
2 is the variance of the logeKs and gi the correlation

length in direction i.

2.3. Equivalent Transport Models and Parameters

[9] The 3-D transport process in a heterogeneous aquifer
may be represented using equivalent transport models and
model parameters. This representation serves two purposes.
The first is to upscale the transport process to a larger scale
where local variations of advection velocities cannot be
considered. The second is to quantify the spatial variability
of the transport.
[10] Two equivalent transport models are considered. The

first is the ‘‘upscaled’’ or ‘‘equivalent’’ convection disper-
sion model which describes ensemble averaged concentra-
tions, hC(x, t)i, i.e., the expected concentration in all
realizations of the conductivity field. This model assumes
a hydrodynamically uniform medium with a large-scale
deterministic and uniform advection velocity U and equiv-
alent dispersion tensor Deq. Ensemble averaged concentra-
tions are described as

@ C x; tð Þh i
@t

¼ �Ur C x; tð Þh i þ Deqr2 C x; tð Þh i ð8Þ

[11] Similar to the difference between flux and resident
concentrations in homogenous media, the ensemble
averaged concentration can be defined in two ways: either
hC(x, t)i represents the average of the local concentrations
in all realizations, i.e., the ensemble resident or volume
averaged concentration hCr(x, t)i, or hC(x, t)i represents the
average of the local solute fluxes divided by the average of
the local water fluxes, i.e., the ensemble flux averaged
concentration hCf(x, t)i which is defined as

Cf x; tð Þ
	 


� q1s x; tð Þh i
q1 xð Þh i


 q1 xð ÞC x; tð Þh i
q1 xð Þh i

ð9Þ

where q1s and q1 are, respectively, the solute and water flux
in direction x1. The approximation in equation (9) implies
the assumption of advection dominated transport character-
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ized by large Peclet numbers, i.e., Pe = x1/ldL � 10 (x1 is
the transport distance), so that the local dispersive solute
flux can be neglected compared with the advective solute
flux component [Parker and van Genuchten, 1984], which
is generally valid in aquifers. hCr(x, t)i is related to a solute
particle location probability distribution whereas hCf(x, t)i
relates to a distribution of particle travel times. When the
hydraulic conductivity field is stationary, when the mean or
expected flow field is uniform, and when the extent of the
solute plume in the direction perpendicular to the mean flow
direction is much larger than the spatial correlation scale of
the hydraulic conductivity, hC(x, t)i is constant in a plane
perpendicular to the mean flow direction (i.e., hC(x, t)i =
hC(x1, t)i where x1 is the flow direction). Then the ensemble
averaged concentration, hC(x1, t)i, can be represented by the
spatial average of the local concentrations/solute fluxes in
that plane. Since we inject a tracer plume in a wide injection
slab perpendicular to the mean flow direction (see below),
we assume that these assumptions are met in our study and
we interchange in the following the expected value (h i) of a
variable in all realizations of the hydraulic conductivity field
with the spatial average of the variable in a plane perpen-
dicular to the mean flow direction. Under these conditions
the large-scale transport process can be represented as a
one dimensional process and the equivalent convection-
dispersion model, equation (8) can be written as

@ C x1; tð Þh i
@t

¼ �U1

@ C x1; tð Þh i
@x1

þ leqU1

@2 C x1; tð Þh i
@x21

ð10Þ

where U1 is the mean pore water velocity and leq is the
equivalent dispersivitiy that is defined as leq = D1eq/U1 and
quantifies the spreading of averaged 1-D concentration
profiles or of averaged breakthrough curves. Only for large
travel distances, relative to the correlation of the hydraulic
conductivity, equation (10) can predict the evolution of
concentration profiles and breakthrough curves with time
and depth using a constant leq. For smaller travel distances,
the equivalent convection dispersion model and leq must
be interpreted as tools to describe and parameterize an
observed breakthrough curve (BTC) that is assumed to be
the result of a 1-D equivalent convection dispersion process
in a hydrodynamically homogeneous medium. For small
travel distances, the spreading of concentration profiles and
breakthrough curves increases more rapidly with increasing
travel distance than predicted by an equivalent convection-
dispersion model assuming a constant leq. As a conse-
quence, leq derived from breakthrough curves at different
travel distances increases with travel distance.
[12] The second equivalent model that describes and

parameterizes time series of locally observed concentrations
is the stream tube model (STM). A time series of solute
concentrations at a certain point, C(x, t), is interpreted as the
result of a 1-D convection dispersion process in a stream
tube, which connects the injection plane with x. Transport in
the stream tube is described as

@C x; tð Þ
@t

¼ �vs xð Þ @C x; tð Þ
@x

þ vs xð Þls xð Þ @
2C x; tð Þ
@x2

ð11Þ

where vs(x) and ls(x) are the stream tube velocity and
dispersivity, respectively, and x is the stream tube coordi-

nate. When the stream tube is assumed to be a straight tube,
x corresponds with the coordinate of the mean flow direc-
tion, x1. Similar to the equivalent dispersion model, the
stream tube model must be interpreted as a tool to param-
eterize a local BTC that is observed at a certain location x
assuming a 1-D transport process in a hydrodynamically
homogeneous and isolated stream tube. The stream tube
velocity vs(x) represents the average velocity of particles
along their trajectory from the injection plane to point x.
The spatial variability of vs(x) in a reference plane perpen-
dicular to the mean flow direction reflects the spatial
variability of the flow. The stream tube dispersivity, ls(x),
is a measure of the dilution of the injected concentration due
to local mixing processes along the stream tube trajectory
between the injection plane and x.
[13] For an instantaneous injection of solutes across an

injection plane perpendicular to the mean flow direction, the
time series of hCf(x1, t)i and C(x, t) represent solute travel
time distributions from the injection plane to the reference
plane and the observation point x, respectively. The equiv-
alent model parameters can be derived from the temporal
moments of the travel time distributions: the average arrival
time, t(x1) or t(x), and the variance of arrival times, st

2(x1)
or st

2(x) [e.g., Jury and Sposito, 1985]:

U1 x1ð Þ ¼ x1

t x1ð Þ ¼
x1Z1

0

t c f x1; tð Þ
	 


dt

ð12Þ

vs xð Þ ¼ x1

t xð Þ ¼
x1Z1

0

tc x; tð Þdt

ð13Þ

leq x1ð Þ ¼ x1s2t x1ð Þ
2t2 x1ð Þ

¼

U2
1

Z1
0

t2 c f x1; tð Þ
	 


dt �
Z1
0

t c f x1; tð Þ
	 


dt

0
@

1
A22

4
3
5

2x1

ð14Þ

ls xð Þ ¼ x1s2t xð Þ
2t2 xð Þ

¼

v2s xð Þ
Z1
0

t2c x; tð Þdt �
Z1
0

tc x; tð Þdt

0
@

1
A22

4
3
5

2x1

ð15Þ

where hc f(x1, t)i and c(x, t) are time normalized concen-
trations:

c f x1; tð Þ
	 


¼
Cf x1; tð Þ
	 


Z1
0

Cf x1; tð Þ
	 


dt

ð16Þ

c x; tð Þ ¼ C x; tð ÞZ1
0

C x; tð Þdt

ð17Þ
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As an alternative, the analytical solution of the CDE for a
Dirac d(t) uniform solute flux at the injection plane and
assuming no backward diffusion across the injection plane
(i.e., a semi-infinite medium), which leads to the same
relations between temporal moments of concentrations and
CDE parameters, can be fitted to time series of local or
averaged concentrations:

c x1; tð Þh i ¼ x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pleqU1t3

p exp � x1 � U1tð Þ2

4leqU1t

" #
ð18Þ

c x; tð Þ ¼ x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pls xð Þvs xð Þt3

p exp � x1 � vs xð Þtð Þ2

4ls xð Þvs xð Þt

" #
ð19Þ

2.4. First-Order Predictions of Equivalent Transport
Parameters and Their Spatial Variability

[14] The equivalent parameters can be predicted in terms
of geostatistical parameters, which characterize the spatial
variability of the hydraulic conductivity, and the local-scale
solute transport parameters, which describe local-scale pro-
cesses such as local-scale hydrodynamic dispersion.
[15] Because Ks(x) is a stochastic parameter, the pore

water velocity u(x) and the concentration C(x, t) are
random variables and the flow (equation (1)) and transport
(equation (3)) equations are stochastic equations. In the
Lagrangian approach, the transport equation is interpreted
as an equation that describes the probability distribution of
locations or of arrival times of individual solute particles. The
moments of the particle location and arrival time distributions
are derived from the kinematic equations that describe the
particle trajectories. The travel time, t, of a particle from an
injection point a to a reference plane at distance x1 from the
injection plane is given as [Dagan et al., 1992]

dt x1; að Þ
dx1

¼ 1

u1 X t; að Þð Þ þ vd1 tð Þ ð20Þ

where u1 is the pore water velocity in the direction of the
mean flow, X(t;a) is the location of the particle at time t,
and vd1(t) is a velocity fluctuation which represents the
effect of the local-scale dispersion process. Equation (20)
forms the basis for the derivation of the moments of the
particle arrival times from the statistics of the pore water
velocity and the local-scale dispersion. The particle trajec-
tory, along which the pore water velocities need to be
evaluated, depends implicitly on the stochastic velocity
field so that it is generally not possible to obtain explicit
relations between the particle travel time statistics and the
statistics of the velocity field. In order to solve this problem,
the particle trajectory is approximated by the expected
trajectory [e.g., Dagan, 1989], hX(t;a)i = U t + a, and a
deviation that accounts for the displacement due to local-

scale dispersive velocities, xd(t) =
Rt
0

vd(t
0)dt0 [Fiori and

Dagan, 2000]. Furthermore, the approximate solutions are

obtained assuming that the local-scale dispersion tensor, Dd,

and the porosity, f0, are constant. The derivation of the first-
order estimate of the variance of arrival times at a reference
plane, st

2(x1), is given, for instance, by Vanderborght
and Vereecken [2002]. Combining equation (13) of

Vanderborght and Vereecken [2002] (and correcting it
for a typographical error) with equation (14) above,
the first-order estimate of the equivalent dispersivity is
given by

leq x1ð Þ 
 lL þ
1

x1

Zx1=U1

0

Z t

0

Z
k

exp ik1U1 � kT � Dd � k
� �

t � t0ð Þ
� �

� Su1u1 kð Þdkdt0dt
ð21Þ

where Suu(k) is the first-order approximation of the spec-
trum of the local-scale velocity field, which is related to the
spatial covariance of the velocity field, Cuiuj(h), as

Cuiuj hð Þ ¼ ui xð Þ � Uið Þ uj xþ hð Þ � Uj

� �	 

¼

Zþ1

�1

exp ik � h½ �Suiuj kð Þdk ð22Þ

For the longitudinal (i.e., in the flow direction) compo-
nent of the local velocity (u1) and an exponential covari-
ance function of logeKs, the first-order approximate
velocity spectrum, Su1u1(k), is given by [e.g., Russo,
1995]

Su1u1 kð Þ 
 1� k21
k21 þ k22 þ k23

� �2 U2
1s

2
f g1g2g3

p2 1þ g21k
2
! þ g22k

2
2 þ g23k

2
3

� �2
ð23Þ

[16] The expected variance of arrival times at a certain
point on the reference plane for a given realization of the
velocity field, hst2(x)i, is obtained by subtracting the co-
variance of arrival times of two different particles that cross
the reference plane at the same point, stt(x, x), from the
variance of particle arrival times at the reference plane,
st
2(x1). The covariance of arrival times stt(x, x) is given in

equation (17) of Vanderborght and Vereecken [2002]. The
first-order approximation of the expected stream tube dis-
persivity hls(x1)i is

ls x1ð Þh i 
 leq x1ð Þ � 1

2x1

Zx1=U1

0

Zx1=U1

0

Z
k

exp

� ik1U1 t � t0ð Þ � kT � Dd � k t þ t0ð Þ
� �

Su1u1 kð Þdkdtdt0 ð24Þ

In a first-order approximation, the spatial covariance of
stream tube velocities, Cvsvs

(x, x + h), is related to the
two-particle arrival time covariance stt(x, x + h) as (see
Appendix A)

Cvsvs x; xþ hð Þ 
 U4
1

x21
stt x; xþ hð Þ ð25Þ
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The first-order approximation of the two-particle arrival
time covariance is given as

stt x; xþ hð Þ 
 1

U2
1

Zx1=U1

0

Zx1=U1

0

Z
k

exp

� ik1U1 t � t0ð Þ þ ik � h� kT
�

�Dd � k t þ t0ð Þ�Su1u1 kð Þdkdtdt0

ð26Þ

The number of multiple integrals in equations (21), (24),
and (26) was first reduced by elementary calculus (equa-
tions (21) and (24) reduce to equations (A15) and (A16) of
Vanderborght and Vereecken [2002], respectively) and the
resulting integrals were evaluated numerically.

3. Methods

[17] In this part, the setup of the numerical experiment
and the derivation of equivalent parameters from simulated

breakthrough curves are presented. A scheme of the electric
and hydraulic simulation domains, the locations of the
electrodes, bore holes, and the solute injection slab is given
in Figure 2. The flow and transport parameters and the setup
of the ERT data acquisition were chosen so as to represent
realistic conditions. The 3-D flow and transport simulations
and the 3-D modeling of the electric potential fields were
carried out on the Cray T3E supercomputing system at the
Forschungszentrum Jülich whereas the 2-D ERT inversions
were performed on a standard PC.

3.1. Setup of Flow and Transport Simulation

[18] An aquifer model with a heterogeneous distribution
of Ks(x) was generated using a Kraichnan random field
generator [Kraichnan, 1970]. The spatial correlation of
logeKs was assumed to be isotropic in the horizontal
direction, i.e., g1 = g2. The porosity, f0, of the flow domain
was set equal to 0.25. An overview of the used flow and
transport parameters, the preset geostatistical parameters, as
well as the actual mean and variance of the generated

Figure 2. (a) Frontal and (b) top view of the hydraulic (solid lines) and electric (dashed lines)
simulation domains, the coordinate systems, the location of the electrodes (solid circles), of the boreholes
(circled crosses), and of the solute injection slab (shaded line or rectangle).
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conductivity field are shown in Table 1. The dimensions of
the simulation domains Li and the grid sizes Dxi are given in
Table 2. The preset spatial correlation function, rff (h) =
Cff (h)/Cff (0), and the spatial correlation of the generated
hydraulic conductivity field are shown in Figure 3.
[19] At the bottom and top boundaries (x3 = 0 and x3 =

L3 = 20 m) and at the two lateral boundaries (x2 = 0 and x2 =
L2 = 100 m), a zero flow or zero hydraulic head gradient
boundary condition was implemented. At the front and
back surfaces (x1 = 0 and x1 = L1 = 100 m), a uniform
hydraulic head distribution was defined so that the mean
hydraulic head gradient in the x1 direction was �0.001.
The hydraulic head and Darcy flow velocity fields were
obtained by a numerical solution of equation (1) using the
3-D finite element code TRACE [Vereecken et al., 1994].
[20] For the transport simulations, we assumed that the

molecular diffusion can be neglected. The longitudinal and
transverse dispersivities (equation (4)) were defined as 0.1 m
(ldL) and 0.01 m (ldT), respectively. These local-scale
dispersivities are larger than dispersivity values reported
for sandy aquifers (e.g., ldT = 0.005 m by Fiori and Dagan
[1999] for the Borden test site) but of the same order of
magnitude as dispersivity lengths that were derived from an
analysis of local breakthrough curves observed in a gravel
sediment [e.g., Vanderborght and Vereecken, 2002]. To
solve the transport equation (equation (3)) zero flux bound-
ary conditions were imposed on the lateral, top and bottom,
and front boundaries. A uniform initial tracer concentration
C0 was assumed in a 50 m wide, 10 m deep and 0.5 m thick
vertical slab at 20 m downstream from the front boundary
(x1 = 20 m) in the region 25 m < x2 < 75 m and 5 m < x3 <
15 m. An initially solute free domain was defined outside
the injection slab. The transport equation was numerically
solved for these initial and boundary conditions using the
PARTRACE code [Neuendorf, 1997], which solves the
convection dispersion equation using a particle tracking
procedure. 108 particles were ‘‘injected’’ which corresponds
to 104 particles per grid cell of the injection slab. In the
PARTRACE code, the advective movement of individual
particles in the flow field is tracked and local-scale disper-
sion is modeled by adding a random displacement. Con-
centration distributions were calculated until 150 days after
tracer injection at daily intervals by counting the number of

particles in the volumetric grid element. From each con-
centration distribution, a spatial distribution of bulk electri-
cal conductivity, sb, was derived assuming a linear relation
between concentration and sb:

sb x; tð Þ ¼ sb;in þ bC x; tð Þ ð27Þ

where sb,in is the initial background conductivity and b a
calibration parameter. In this study, we assumed that sb,in
and b are constant in space. sb,in was set to 0.02 S/m and b
was chosen to be 5 10�6 S m2 particles�1 so that the
breakthrough of the solute plume in a plane at 30 m
downstream from the injection surface led to a maximum
increase in the bulk electrical conductivity by approximately
a factor of 10. In reality, sb,in and b vary with location but
local values sb,in and b are generally unknown. The impact
of this uncertainty on the interpretation of ERT derived sb
images is briefly discussed in the general discussion and
conclusions section.

3.2. Simulation of ERT Data Acquisition

[21] At 30 m downstream from the injection plane (x1 =
50 m), a fictitious ERT image plane composed of seven
boreholes was assumed. The boreholes were set with a
separation distance of 10 m between x2 = 20 m and x2 =
80 m and were each equipped with 26 electrodes between
x3 = 2.5 m and x3 = 17.5 m with a vertical separation of
0.6 m. For each electrode, the electric potential field for a
current injection at the electrode and a virtual current sink
electrode in the middle of the image plane was calculated
by solving the Poisson equation:

r � sb x; tj
� �

rji x; tj
� �� �

þ Id x� xið Þ � Id x� xcð Þ ¼ 0 ð28Þ

where ji(x, tj) is the electric potential field due to current
injection at electrode i at time tj, d is the Dirac delta
function, xi is the position of the electrode i, xc the position
of the virtual sink electrode (i.e., in the center of the ERT
image plane), and I is the current strength at the electrodes.
Because of the analogy between the hydraulic head
(equation (1)) and the electric potential (equation (28))
equations, equation (28) was solved numerically using the
TRACE code. Equation (28) was solved 7644 times (at
42 times for 182 current injection electrodes) using no-flow
boundary conditions at the simulation domain boundaries
(note that the no-flow boundaries make the use of a virtual
sink necessary). For the 2-D inversion, it is assumed that the
electrical conductivity field extends infinitely in the x1
direction. Therefore the length L1 of the domain for the 3-D

Table 1. Parameters of the Flow and Transport Models:

Geometric Mean of the Hydraulic Conductivity (Kg), Porosity

(f0), Longitudinal (ldL) and Transverse (ldT) Dispersivity, and

Geostatistical Parameters of the Exponential Covariance Model,

Variance (sf
2) and Correlation Length (gi) of Loge Transformed

Hydraulic Conductivitya

Parameter Value

Flow and transport parameters
Kg, m d�1 250 (239.2)
f0 0.25
ldL, m 0.1
ldT, m 0.01

Geostatistical parameters
sf

2 1.0 (1.02)
g1, m 5
g2, m 5
g3, m 1

aSee equation (7). Parameters in parentheses are the actual mean and
variance of the generated conductivity field.

Table 2. Spatial Discretization and Size of Modeling Grids

Discretization,
m

Domain Size,
m

Dx1 Dx2 Dx3 L1 L2 L3

3-D flow/transport modelinga 0.5 0.5 0.1 100 100 20
3-D modeling of electric potential fieldsa 0.5b 0.5 0.2 240 70 20
2-D ERT inversionc - 1.0 0.3 - 70 20

aHexaedric elements.
bThe increment increases with distance from the image plane.
cThe grid size represents the parameterization used in the 2-D inversion.

For the 2.5-D electrical modeling, each rectangular grid cell was divided
into four triangular elements.
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electric potential field simulation was extended to 240 m
(120 m upstream and downstream of the image plane, i.e.,
from x1 = �70 m to x1 = 170 m) to minimize boundary
effects. In order to reduce the numerical load, the grid size
was increased in the vertical direction (Dx3 = 0.2 m) and the
width of the simulation domain was decreased to L2 = 70 m
(i.e., from x2 = 15 to x2 = 85 m). In the direction
perpendicular to the image plane (x1) a variable grid size
was used: Dx1 = 0.5 m between 0 m and 10 m and Dx1 = 1 m
between 10 m and 20 m from the image plane. The regions
between 20 and 120 m from the image plane were
discretized using 20 elements in the x1 direction for each
region (upstream and downstream) with a linearly increas-
ing grid size. The electrical conductivities of the larger
grid cells were obtained by arithmetic averaging of
the conductivities of the smaller cells obtained using
equation (27). For the regions between 20 m and 120 m
upstream and downstream from the image plane, the
conductivity was set equal to the background conductivity.
[22] A transfer resistance data set was assembled accord-

ing to a ‘‘skip-one’’ dipole-dipole scheme [e.g., Slater et al.,
2000] by superposition of the modeled electric potential
fields ji(tj). The separation distance between electrodes
forming a dipole was constant, i.e., 1.2 m. As a conse-
quence, electrodes of an individual dipole are in the same
borehole. The electric current was impressed through one
dipole and the resulting potential differences were measured
using all other dipoles in the same and the neighboring
boreholes. For both dipoles in the same borehole, only
those potential measuring dipoles were considered which
were at least one dipole length (i.e., 1.2 m) from the
nearest current electrode to reduce the effect of numerical
errors and because the large potential gradients near the
current injection dipoles generally exceed the dynamic
range of ERT measurement equipment. The transfer
resistance at time tj for a current injection at electrodes
i and i + 2 and a voltage measurement between electro-
des k and k + 2, ri

k(tj), is calculated from the electric
potential fields ji(tj) and ji+2(tj) as

rki tj
� �

¼
ji xk ; tj
� �

� jiþ2 xk ; tj
� �� �

� ji xkþ2; tj
� �

� jiþ2 xkþ2; tj
� �� �

I

ð29Þ

where xk and xk+2 are the positions of the potential
electrodes. Note that because of superposition, the sink
term of the virtual electrode in equation (28) cancels out
when the difference between ji(tj) and ji+2(tj) is taken so
that this difference is independent of the chosen location of
the virtual electrode, xc. The dipole polarity was chosen
such as ri > 0. Only those ‘‘measurements’’ where r exceeds
5.10�4 W were retained in order to simulate a minimum
voltage that can be reliably determined by typical ERT
instruments, here e.g., 0.5 mV for a current of 1 A. This
resulted in approximately 4500 transfer resistance measure-
ments in each data set for a particular time tj.
[23] For each time tj, a noise contaminated data vector of

loge transformed resistances, d, was constructed:

di ¼ loge rið Þ þ ei ð30Þ

where ei is a zero-mean uncorrelated Gaussian random noise
with a standard deviation of 0.02 (corresponding to 2% of
ri). Note that the loge transform is used because of the
typically large dynamic range of transfer resistances in ERT
data sets.

3.3. Two-Dimensional Tomographic Inversion of
ERT Data Sets

[24] In ERT, the spatial distribution of bulk electrical
conductivity, sb, is reconstructed from a data set of transfer
resistance measurements. This involves the discretization of
the sb distribution in a finite element or finite difference
grid, forward modeling of the data set for a given sb
distribution, and the minimization of an objective function.
Following the approach of Daily et al. [1992] and
LaBrecque et al. [1996], the following objective function
Y is used:

Y mð Þ ¼ k W d� f mð Þð Þk2 þ a kRmk2 ð31Þ

where m is the parameter vector with loge transformed sb of
the finite element (difference) grid, f is the operator of the
forward model, W is a diagonal matrix containing data
weights, R is a matrix evaluating the roughness of the
logesb distribution (here, kRmk2 is the discrete approxima-
tion of

R R
kr loge sbk2 dx2dx3), and a is a regularization

parameter which balances data misfit and model roughness

Figure 3. Spatial correlation (rff) of the loge transformed hydraulic conductivity (a) in the x1 and x2
directions and (b) in the x3 direction. Solid lines represent the preset spatial correlation function (equation
(7)), and the symbols represent the spatial correlation of the generated hydraulic conductivity field.
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in the objective function. For cross-borehole electrode
arrangements in a 2-D plane an ERT data set predominantly
contains information about the electrical conductivity
distribution in this plane, while, in comparison, information
content on off-plane conductivity variations is strongly
limited due to the spatially biased sensitivity characteristics
of individual cross-borehole ERT measurements [e.g.,
Spitzer, 1998]. Therefore, for the inversion of ERT data
associated with coplanar cross-borehole electrode arrange-
ments, the electrical conductivity distribution is commonly
considered as a 2-D distribution in the considered plane
(image plane), which is constant in the perpendicular (x1)
direction. The forward model f, i.e., the 3-D Poisson
equation (28), then simplifies to a 2-D problem after
performing a 1-D Fourier cosine transform with respect to
the x1 direction, which is assumed to be of infinite extent
[e.g., Kemna, 2000]. In practice, mixed boundary conditions
are generally used at the lateral and bottom boundaries
within the half-space to account for partial current flow
across the boundary [e.g., Dey and Morrison, 1979].
However, in order to be consistent with the ERT data
acquisition simulation, we here imposed no-flow boundary
conditions at all boundaries. The effect of the type of
boundary condition on the quality of the inverted ERT
images is minimal, provided that both forward model (or
data) and inverse model satisfy the same condition. This
was analyzed by inverting simulated data for a 2-D sb
distribution using a no-flow boundary condition at the top
boundary (Earth’s surface) and, respectively, mixed and no-
flow boundary conditions at the lateral and bottom
boundaries, and comparing the corresponding imaging
results. Since the iterative minimization of equation (31)
involves numerous runs of the forward model f for different
parameter fields m, the spatial resolution of the parameter
field was reduced: Dx2 was increased to 1 m and Dx3 to
0.3 m. A summary of the grid sizes used for the flow and
transport simulation, the simulation of the 3-D electric
potential fields used for the generation of the ERT data set,
and the parameterization used for the 2-D inversion of the
ERT data sets is given in Table 1.
[25] The data are weighted by a weighting factor, Wii,

which is inverse proportional to the data error. The initial
data weights are represented by the following error model
[e.g., LaBrecque et al., 1996]:

Wii ¼ aþ b

ri

� ��1

ð32Þ

In accordance with the noise model equation (30), the
parameter a, which represents the relative resistance error,
was chosen to be 0.02. The parameter b was set to 10�5 W
and represents an absolute error of the modeled resistances
corresponding to the maximum numerical accuracy. The
chosen relative noise level of 0.02 and absolute error of
10�5 W are relatively low. In practice, not only uncertainty
in the measurements, but also systematic errors associated
with the modeling and measurement approaches (e.g.,
borehole effects, 2-D representation of a 3-D sb distribu-
tion) must be accounted for, so that an error level of more
than 0.1 is not uncommon for cross-hole ERT [e.g., Kemna,
2000]. However, for monitoring purposes, the temporal
changes in electrical conductivities are of interest. In the so-

called ‘‘difference’’ inversion approach [LaBrecque and
Yang, 2001], any static sources of errors are cancelled out
by subtracting an initial or reference data set d0 and
modeling result f(m0) from the data set d and modeling
result f(m), respectively, at a later time. As a consequence,
the chosen error model parameters were found to be realistic
for ERT difference inversion (e.g., Kemna et al. [2002] used
a 0.03 relative noise level). In our synthetic study, the initial
sb distribution is homogeneous and static measurement
errors are not considered so that a difference inversion
would yield exactly the same result as an ‘‘absolute’’
inversion. The data weighting matrix was updated after each
inverse iteration step using the ‘‘robust’’ data reweighting
algorithm proposed by LaBrecque and Ward [1990]. This
procedure reduces the weight of individual data with a large
misfit and has been shown to be effective for the processing
of noisy data [e.g., Morelli and LaBrecque, 1996]. A Gauss-
Newton scheme was used for the iterative minimization of
the objective function, equation (31). At each iteration step,
a univariate search was preformed to find the optimum
value of a. The iteration was stopped when the root-mean
square measure of the data misfit in equation (31) reached 1
for the largest possible value of a. Further details on the
used forward modeling and inversion algorithms are given
by Kemna [2000].

3.4. Derivation of Equivalent Parameters From
Simulated and Inverted Breakthrough Curves

[26] Equivalent transport parameters were determined on
7 reference planes at 10 m to 70 m from the initial position
of the tracer. Time series of concentration images that were
inverted from the ERT data sets at 30 m from the injection
plane were analyzed in the same way.
[27] The stream tube model parameters ls and vs were

calculated for each pixel with T0 > 20000 #Particles d m�3

where T0 is the zeroth moment of the BTC which is defined
as

T0 xð Þ ¼
Z 1

0

C x; tð Þdt ð33Þ

[28] For each pixel, T0 was calculated using a numerical
integration of the concentration breakthrough. Before inte-
grating an ERT inverted BTC, all concentration values
smaller than 20 #Particles m�3 were set to 0. For the
simulated BTCs, the method of moments was used to
determine the STM parameters whereas for the inverted
BTCs, the STM parameters were obtained from fitting the
solution of the 1-D CDE to the local BTC (equation (18)).
Parameters were fitted because negative concentrations (i.e.,
bulk electrical conductivities smaller than the background)
were occasionally observed in the inverted concentration
images due to inversion artifacts. Since time moments are
strongly influenced by concentrations in the tail of the
breakthrough, especially the higher moments, negative
concentrations in the tailing part of the breakthrough occa-
sionally led to artificially small mean arrival times and
negative travel time variance.
[29] To calculate the spatially averaged solute flux

concentration hCf(x1, t)i, local solute fluxes must be
derived by multiplying the local concentrations with the
local water flux (equation (9)) across the reference plane.
However, with current measurement techniques, it is
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Figure 4. (left) Simulated and (right) ERT inverted electrical conductivity distributions in the ERT
image plane at different days after injection of the tracer plume. R is the pixel-wise correlation coefficient
between simulated and inverted electrical conductivities. (Note the different color scale used for the top
six plots.)
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impossible to determine images of local water fluxes so
that average solute fluxes must be approximated on the basis
of concentration images. Vanderborght and Vereecken
[2001] discussed different approaches to approximate flux
averaged concentrations in a reference plane based on
local concentration measurements. In a first approximation,
it is assumed that local water fluxes and solute concen-
trations are not correlated (hq1(x) C(x, t)i = hq1(x)i hC(x,
t)i) so that the flux averaged concentration is approximated
by the volume averaged concentration (hCf(x1, t)i 
 hCr(x1,
t)i). When the particle arrival time at a certain location
on the reference plane is inversely correlated with the local
water flux at this location, this approximation under-
estimates the average solute flux concentrations in the early
stage of the breakthrough and overestimates them in the
later stage. In a second approximation, it is assumed that the
local water fluxes are correlated with the stream tube
velocities so that from equation (9) follows that the flux
averaged concentrations are approximated by the velocity
weighted local concentrations:

Cf x1; tð Þ
	 



 vs xð ÞCr x; tð Þh i
vs xð Þh i ð34Þ

The average BTCs were calculated using pixel values of
simulated and inverted bulk electrical conductivities in the
region 2 m < x3 < 18 m and 15 m < x2 < 85 m (or 0 m < x02 <
70 m).

4. Results and Discussion

4.1. Direct Comparison Between Simulated and
ERT Inverted Sb Images

[30] Images of simulated and ERT inverted electrical
conductivities, sb, in the ERT reference plane are shown

for different days after solute injection in Figure 4. Looking
at the spatially averaged sb in the reference plane, hsbi
(Figure 5), the ERT inverted images reproduce the arrival
and the magnitude of the mean solute peak fairly well. The
magnitude of the mean solute peak or the overall contrast in
the ERT inverted images when the peak breaks through
(days 19 and 24 in Figure 4) is somewhat smaller. The
rising and falling limbs of the hsbi BTC are relatively well
reproduced as well. However, the ERT derived hsbi BTC
shows an earlier breakthrough and higher values in the
tailing part until approximately 80 days after solute
injection. From day 8 until day 12, ERT derived hsbi are
clearly larger than the simulated hsbi. The contrast in the
ERT sb images is smaller than in the simulated images
(Figure 4). Also the ERT inverted images in the tailing part
(e.g., day 40 and day 53) exhibit a smaller contrast despite a
higher hsbi.
[31] The larger-scale structures of the simulated sb

images are well preserved in the ERT inverted sb images.
The anisotropy of the hydraulic conductivity field with a
larger spatial correlation in the horizontal than in the vertical
direction is clearly reflected in the structure of the simulated
tracer distributions. Despite an isotropic smoothing, which
was imposed as regularization, the ERT inverted sb images
reproduce the anisotropic character of the simulated sb
distributions. The smoothing operator, the lower spatial
resolution of the ERT parameterization, as well as the
diffusive nature of electric field itself lead to a reduced
spatial resolution of the inverted sb images. Small-scale
structures are smeared out reducing local conductivity
peaks. Considering a pixel-wise correlation coefficient
between simulated and inverted sb images (to calculate
the pixel-wise correlation, the larger pixels of the inverted
sb images were divided into 6 pixels of the same size as in
the simulated images; see Table 2) (Figure 4), the

Figure 5. Breakthrough curve of the spatially averaged bulk electrical conductivity, hsbi, in the
ERT image plane. Solid line represents simulated hsbi, and dashed line represents the ERT inverted
hsbi.
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Figure 6. Spectral densities in the (left) horizontal and (right) vertical directions of the simulated (solid
lines) and ERT inverted (dashed lines) sb images.
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correlation is highest when the solute peak breaks through
(day 19 and day 24) whereas it decreases when the solute
mass or the overall contrast in the image is lower. The
spatial resolution of the simulated and inverted sb images is
quantified by the wave number spectra of the images, which
are shown in Figure 6. Since the structures in the sb images
are of larger extent in the horizontal than in the vertical
direction, the horizontal spectra drop off faster with
increasing wave number than the vertical ones. The effect
of smoothing is clearly reflected in the spectra of the ERT
inverted images showing a loss of information, i.e., a lower

spectral density at higher frequencies. The loss of spectral
information is more significant in the vertical than in the
horizontal direction. Also important to note is that the loss
of high-frequency information is larger at the beginning
(day 12) and end (day 40, day 53) of the plume
breakthrough.
[32] The decrease in pixel correlation and the loss of

high-frequency information at the beginning and end of the
solute breakthrough can be explained by the lower signal of
the tracer plume, the smoothness constraint, and the 2-D
approximation of the 3-D conductivity distribution. In the

Figure 7. Examples of local breakthrough curves in terms of bulk electrical conductivity (a) at locations
where simulated (solid lines) and ERT inverted (dashed lines) curves match fairly well and (b) at
locations where the agreement is less good.
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ERT inversion, the roughness of the model, which is related
to the model contrast, is minimized subject to fitting the data
to an acceptable degree (noise level). For a decreasing
model contrast, the signal-to-noise ratio decreases. As a
consequence, the smoothness constraint leads to a more
pronounced decrease in spatial resolution and contrast in the
inverted image when the model contrast decreases. This
illustrates the relevance of the signal-to-noise ratio and the
error model (equation (32)) for the quality of the inverted
images.
[33] The 3-D electric current distribution is influenced by

the electrical conductivity distribution upstream and down-
stream from the ERT image plane. As a consequence, the
transfer resistances are affected by the conductive solute
plume when it has not yet reached (rising limb of the hsbi
BTC) and already left (falling limb) the image plane.
However, this effect does not result in the appearance of
clearly delineated artificial features in the inverted images
but is of a more diffuse character.
[34] Both the pixel correlation and the wave number

spectra are integrative measures of the correspondence
between the simulated and inverted sb images. In
Figure 7 the simulated and ERT inverted BTCs in a few
selected pixels are shown. Simulated local BTCs were
averaged over neighboring pixels to achieve the same
averaging area or pixel size as in the ERT inverted images.
At some locations the simulated and inverted BTCs agree
fairly well (Figure 7a) whereas the agreement is not good
at other locations (Figure 7b). The arrival of the concen-
tration peak is well reproduced but the spreading is largely
overestimated at some locations. These locations corre-
spond with locations where the variability in peak arrival
times in neighboring pixels is large (see next section). The
large deviation at some locations between simulated and

ERT inverted pixel-scale BTCs illustrates that large devia-
tions between sb values derived from local-scale ground-
water sampling and from ERT images are not unexpected.

4.2. Interpretation of Local and Averaged BTCs Using
Equivalent Transport Models

[35] The effect of the averaging procedure on the
estimation of large-scale averaged breakthrough curves in
a reference plane is illustrated in Figure 8. Since we
assumed a spatially constant relation between sb and C
(equation (27)), the spatially averaged sb correspond with
hCr(x1, t)i whereas the flux and velocity weighted sb
represent hCf(x1, t)i and its approximation through
equation (34), respectively. The flux averaged sb BTC
shows a larger peak concentration and earlier peak break-
through than the nonweighted sb BTC. Using stream tube
velocities as a proxy for the local water flux, a relatively
good approximation of the flux weighted BTC is obtained.
However, the velocity weighted average sb are smaller than
the flux weighted averages. This is explained by the
exclusion in the velocity weighted average of pixels at
fringes of the plume where the local tracer signal was too
small (i.e., T0 < 20000) to calculate the stream tube velocity.
However, differences between averaged BTCs using
different averaging weights are of the same order of
magnitude as those between averaged BTCs calculated
from simulated and inverted sb distributions.
[36] The equivalent dispersivity, leq (equation (14)),

derived from averaged concentrations in the reference plane
is plotted against the travel distance in Figure 9. The first-
order prediction of leq (equation (21)) at different distances
from the injection plane is relatively well in agreement with
leq derived from the numerical simulations, which is in line
with previous studies of transport in generated heteroge-

Figure 8. Breakthrough curves of averaged bulk electrical conductivities, hsbi, in the ERT image plane
obtained from transport simulations (solid lines) and from inverted ERT data sets (dashed lines). Spatial
averages (thick lines), flux weighted averages (solid circles), and stream tube velocity weighted averages
(open circles and diamonds) (equation (34)) are shown.
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neous media with sf
2 = 1 [e.g., Bellin et al., 1992]. The leq

derived from the inverted ERT data sets is somewhat
smaller than leq from the simulated concentrations. This
seems at first sight contradictory to the BTC of the averaged
inverted concentrations (Figure 8) which has a lower peak
concentration and a larger spreading than the BTC of the
simulated averaged concentrations. However, in the tailing
part of the BTCs (after day 80) the inverted average
concentrations are smaller than the simulated ones
(Figure 5). Since concentrations in the tailing part have a
large impact on the second temporal moment, leq turns out
to be larger for the simulated than for the inverted average
BTC.
[37] The distribution of the STM parameters that were

derived from the simulated and inverted local BTCs are
shown in Figure 10. Figures 10a and 10b show the
distribution of the time integrated concentration. The range
of simulated and inverted T0 is similar and the overall
spatial pattern of the simulated T0 is well recovered in the
inverted T0 image. However, the inverted T0 image appears
to be more blurred and local high T0, which appear in thin
horizontal bands, are smoothed out. This is an obvious
consequence of the isotropic smoothness constraint that was
applied in the inversion of the ERT data sets. For the stream
tube velocity distributions, vs (Figures 10c and 10d),
basically the same conclusions as for the T0 images can
be drawn. The simulated vs image shows less small-scale
variations than the simulated T0 image and the larger
anisotropic structures in the simulated vs image are better
recovered in the inverted image. The agreement between the
simulated and inverted stream tube dispersivity, ls, images
(Figures 10e and 10f) is clearly less good with the average
simulated ls being considerably smaller than the average
inverted ls. The location of the vertical electrode chains is
clearly visible in the image of inverted ls. The lower
inverted ls values close to the electrode chains are in better
agreement with the simulated ls values. This effect may be
explained by a decrease of spatial resolution of the inverted

concentration images with increasing distance from the
electrode chains. Because of a lower spatial resolution, the
breakthrough in neighboring pixels is integrated which
leads to a higher apparent ls, especially when the stream
tube velocity, vs, is different in the ‘‘joined’’ pixels. A closer
inspection of the ls and vs images reveals that the inverted
ls overestimate the simulated ls especially in those regions
where the gradient of vs is large. A comparison between
simulated, inverted, and first-order predicted ls is shown in
Figure 11. Since the simulated and first-order predicted ls
match fairly well, a fit of the first-order prediction model to
ls derived from measurements may be used to infer, for
instance, the local-scale dispersion coefficient from locally
measured BTCs as was done by Vanderborght and
Vereecken [2002]. Using the inverted ls value averaged
over the entire image would lead to an overestimation of the
local-scale dispersion. If only the inverted ls in the pixels in
the proximity of electrode chains (less than 1m distance
from the electrode chain) are considered, the average
simulated ls is better approximated.
[38] The spatial correlation of the simulated and inverted

vs, rvsvs (h) = Cvsvs
(h)/Cvsvs

(0), and its first-order prediction
are shown in Figure 12. For the horizontal direction, the
inverted and simulated rvsvs (h) are in close agreement.
Although the shape of the simulated/inverted rvsvs (h) is
somewhat different from the shape of the first-order
approximation, the overall agreement is good. The devia-
tions between simulated and first-order predicted rvsvs (h)
can be explained by the fact that only one realization of the
transport process of a limited spatial lateral extent is
considered. Using more realizations or considering a larger
lateral extent of the solute plume are expected to reduce
these deviations.
[39] In the vertical direction, the inverted rvsvs (h) shows a

somewhat larger spatial correlation than the simulated rvsvs
(h). This is a result of the smoothing in the inversion of the
ERT data sets in combination with the smaller spatial
correlation of vs in the vertical direction due to the

Figure 9. Equivalent dispersivity, leq, derived from temporal moments of spatially averaged
breakthrough curves (equation (14)) of simulated and ERT inverted concentrations in reference planes
at different distances from the injection plane and leq predicted from first-order theory (equation (21)).
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Figure 10. Spatial distribution of parameters derived from simulated (Figures 10a, 10c, and 10e) and
ERT (Figures 10b, 10d, and 10f) inverted local breakthrough curves in the ERT image plane: (a and b)
zeroth moment of the BTCs T0 (equation (33)), (c and d) stream tube velocity vs (equation (13)), and
(e and f) stream tube dispersivity, ls (equation (15)).
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anisotropy of the hydraulic conductivity field. The first-
order approximation predicts a smaller spatial correlation in
the vertical direction than the simulated vs. This deviation
may be again the result of the limited lateral extent of the
tracer plume.
[40] The spatial correlation of vs is determined by the

spatial correlation of the hydraulic conductivity. The travel
distance or travel time and the local-scale dispersion, Dd,
are also expected to have an impact on rvsvs (h). The
calculation of rvsvs (h) involves the integration of the
spatial correlation of the pore water velocities, ru1u1 (h),
along the travel paths of two different particles, of which
the deviation from the mean particle trajectory is determined
by the local-scale dispersion (see equation (26)). In
Figure 13 the effect of Dd (expressed in terms of the
dimensionless Peclet number: Pe = g1/ldL) and travel
distance on rvsvs (h) is shown. Because of local-scale
dispersion, local concentration differences are smoothed
out progressively with time, so that the spatial correlation
of vs is expected to increase with time and Dd. The first-
order predictions show, however, that rvsvs (h) increases
only weakly with increasing travel time/distance and
local-scale dispersion. The simulated rvsvs (h) even
decrease with travel distance.
[41] Since rvsvs (h) is little influenced by Dd and travel

time/distance, the spatial correlation scale, gi, of the
hydraulic conductivity could be derived from the measured
rvsvs (h) by a first-order prediction model fit using a rough
estimate of Dd. As shown above, ERT offers the possibility
to derive rvsvs (h) with sufficient spatial resolution so that
the spatial correlation of loge Ks may be derived indirectly
from a tracer experiment. Since leq is only little influenced
by Dd [Fiori, 1996] the variance of the loge transformed Ks

may be derived in a second step using the spatial correlation
of Ks which was derived from rvsvs (h). In a last step, the
local-scale dispersion, Dd, may be derived from ls when the
variance and spatial correlation of Ks are known. This

procedure can be repeated using the updated Dd, sf
2, and gi

until the estimates have converged.

5. General Discussion and Conclusions

[42] We illustrated by means of a synthetic experiment
that tracer movement across a reference plane in a hetero-
geneous aquifer can be characterized in a quantitative way
using a combination of ERT, equivalent transport models,
and first-order approximations of the stochastic flow and
transport equations. General features of the spatiotemporal
tracer breakthrough pattern in the reference plane were well
recovered in the ERT inverted images but clearly influenced
by the smoothness constraint and the 2-D representation of
the 3-D electrical conductivity distribution, which are im-
posed in the data inversion process. Importantly, the effects
of the smoothness constraint are clearly dependent on the
data error level and model contrast. For a lower model
contrast and a corresponding smaller signal-to-noise ratio,
the spatial resolution and the contrast in the ERT inverted
images are more reduced.
[43] Despite the relatively good overall agreement

between the simulated and ERT inverted images, local-
scale electrical conductivities may deviate considerably,
especially in regions where larger gradients in solute peak
arrival time exist. As a consequence, a calibration or a
validation of ERT derived sb images on the basis of local-
scale groundwater monitoring may be difficult.
[44] The spatiotemporal information that is gained about

the transport process was interpreted using equivalent 1-D
convection dispersion models. Using first-order approxi-
mate solutions of the stochastic flow and transport equa-
tions, the equivalent parameters of these models were linked
to the local-scale dispersion tensor and to the statistical
parameters which characterize the spatial heterogeneity of
hydraulic conductivity. Equivalent parameters and their
spatial correlation which were derived from the transport

Figure 11. Spatial average of the stream tube dispersivity, ls, derived from simulated local BTCs in
reference planes at different distances from the injection plane (circles), from ERT inverted local BTCs
(solid diamond, spatial average over the image plane; open diamond, average only in the pixels adjacent
to the ERT electrode chains), and from first-order prediction (solid line) (equation (24)).
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simulation and the first-order solutions were, for the con-
sidered heterogeneity sf

2 = 1, similar. This validates the used
first-order approximate solutions of the stochastic flow and
transport equations, which may therefore be used to derive
the local-scale dispersion and the geostatistical parameters
of the hydraulic conductivity in an inverse way. This allows
the characterization of the subsurface heterogeneity in an
indirect way by monitoring of the transport process.
[45] Since rvsvs (h) is relatively insensitive to local-scale

dispersion and travel distance, it is an important source of
information about the structure of the hydraulic conductiv-
ity field and can be used to infer its spatial correlation. A
major problem with conventional borehole observations is
the lack of spatial resolution to derive rvsvs (h) in the
horizontal direction. In this study, the highest spatial
resolution that could be obtained using borehole informa-
tion was 10 m. This would be clearly insufficient to capture

the spatial correlation of vs in the horizontal direction since
rvsvs (h) could be determined only for h2 = 0 m, 10 m, and
20 m (Figure 12). Using ERT, the spatial pattern of local
stream tube velocities between two observation wells could
be resolved and the spatial resolution with which rvsvs (h)
could be determined in the horizontal direction was about an
order of magnitude higher than the distance between the
boreholes. Therefore ERT offers the possibility to determine
rvsvs (h), from which the correlation scale of the hydraulic
conductivity in the horizontal direction, which is a key
parameter for transport in a heterogeneous aquifer but is
difficult to determine using classical techniques, could be
inverted. Because of a loss of spatial resolution in the ERT
images, the mixing or dilution of the local-scale tracer
concentrations, which is quantified by the stream tube
dispersivity, ls, was overestimated, especially in regions in
the middle between the boreholes and at locations with large

Figure 12. Spatial correlation of the stream tube velocities, rvsvs (h), in the ERT image plane in the (top)
horizontal and (bottom) vertical direction derived from simulated local BTCs (circles), ERT inverted
BTCs (diamonds), and first-order predicted rvsvs (h) (solid line) (equations (25) and (26)).
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local gradients in stream tube velocity. Closer to the
boreholes, where the ERT resolution is higher, ls estimated
from ERT images was close to the simulated ls.
[46] These results illustrate that despite the assumptions

that are made in the inversion of the ERT data sets
(smoothness constraint, assumption of a 2-D distribution
of the bulk electrical conductivity) the method can be used
for a quantitative characterization of the subsurface trans-
port process. However, the ERT inverted equivalent trans-
port parameters and the spatial resolution of the ERT images
depend on the model contrast, error noise, and electrode
configuration. Understanding the effect of these factors on
the ERT inversion results requires further systematic inves-
tigations. The ERT inverted equivalent transport parameters
may be used as evaluation criteria in such studies.
[47] Although we designed the synthetic experiment to be

close to realistic conditions (with respect to the electrode
arrangement, noise level in the acquired ERT data sets,

background electrical conductivity and conductivity con-
trast generated by the salt tracer plume, heterogeneity and
spatial correlation of logeKs, and local-scale dispersion), we
made some simplifying assumptions. The first assumption
we made is that the relation between bulk electrical
conductivity, sb, and solute concentration, C, is constant
over the ERT image plane. In reality, the sb-C relation is
variable due to spatial variability in porosity and inmicroscale
structure of the pore network, which both define the sb-C
relation. Therefore an additional uncertainty in the ERT
derived concentration images must be included. However,
as long as the sb-C relation is linear the local calibration
constants of the sb-C relation cancel out when normalized
local concentrations are calculated (equation (17)). As a
consequence, uncertainty about the local sb-C relation does
not influence the maps of stream tube parameters, vs and ls.
This implies that the use of a stream tube model to interpret
ERT monitored transport, to infer mixing and dilution

Figure 13. Effect of travel distance and local-scale dispersion on spatial correlation of the stream tube
velocities. (top) First-order predictions of rvsvs (h) and rvsvs (h) derived from simulated local BTCs in
reference planes at different distances from the injection plane. (bottom) First-order predictions of rvsvs (h)
at different distances from the injection plane for two different Peclet numbers: Pe = g1/lL.
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parameters, and to characterize the spatial variability of the
hydraulic conductivity, effectively neutralizes uncertainty
about the sb-C relation and its spatial variability. As far as the
averaged concentrations in the image plane, hC(x1, t)i, are
concerned, the effect of the uncertainty or spatial variability of
the local sb-C relation is averaged out when the calibration
constants of the sb-C relation are not correlated with the
arrival time or dilution of the locally observed BTCs. This is
similar to the approximation of the flux averaged concentra-
tions hCf(x1, t)i by the volume averaged concentrations,
which is based on the assumption that local water fluxes are
not correlated with local concentrations. The uncertainty
about hCf(x1, t)i due to spatial variability of the sb-C relation
must be placed against the bias or uncertainty due to the
unknown local water fluxes.
[48] The second assumption we made is that the solute

plume that was monitored is ‘‘ergodic,’’ i.e., representative
for the transport process in all realizations of the hydraulic
conductivity field. For the interpretation of the transport
parameters derived from tracer breakthrough in an image
plane using first-order approximations of the stochastic flow
and transport equations, the observed transport process must
be ergodic. Whether or not a solute plume can be considered
to be ergodic depends on its lateral extent [e.g., Dentz et al.,
2000]. Plumes with a smaller lateral extent sample less of
the heterogeneity of the aquifer and are therefore less
representative for the transport process in all realizations of
the hydraulic conductivity field. As a consequence, the
agreement between first-order estimated and equivalent
transport parameters, for example, hls(x1)i and rvsvs (x),
derived from a solute plume in a single realization is
expected to decrease with decreasing lateral extent of the
solute plume. Since the lateral spreading of a solute plume
due to spatial variability of water flow in a heterogeneous
aquifer is small [e.g., Dagan, 1989], this implies that for
real tracer experiments solute plumes with a wide lateral
extent should be injected. In the numerical experiment, a
slab with a uniform initial concentration was injected. In
real tracer experiments, a tracer solution is injected in
injections wells, which leads to an initially non uniform
solute mass distribution in the aquifer. The injection in a
well represents a boundary value problem in which the
concentration of the inflowing water is defined and more
solute mass is injected in regions with higher hydraulic
conductivity. For the analysis of the local breakthrough on a
reference plane, the effect of spatial variability of the solute
mass in the injection plane is, similar to the local differences
in the sb-C relation, cancelled out when normalized
concentrations are calculated so that stream tube parameters
vs and ls are not influenced. For the equivalent dispersivity
of the surface averaged BTC, leq, Vanderborght et al.
[1998] showed that the difference between boundary and
initial value problems are neglected in first-order approx-
imations of leq, which implies that these differences are
less important in aquifers with a smaller heterogeneity of
logeKs.
[49] Third, we restricted the measurement setup to a 2-D

arrangement of electrodes, in line with the inversion of 2-D
electrical conductivity fields. The fact that the 2-D approx-
imation of a 3-D electrical conductivity distribution did not
lead to considerable artifacts in the inverted conductivity
images indirectly indicates that the collected ERT data sets

did not contain much information about the electrical
conductivity distribution in the direction perpendicular to
the image plane. Therefore a 3-D arrangement of electrodes
seems necessary to derive 3-D electrical conductivity and
concentration distributions. 3-D spatiotemporal concentra-
tion distributions can be used to map hydraulic conductiv-
ities at the investigated site using geostatistically based
inversion procedures, for example, using sequential linear
estimation [Harvey and Gorelick, 1995; Yeh et al., 1995;
Yeh and Liu, 2000]. Geostatistically based inversion
procedures can also be used to invert ERT data sets [Yeh
et al., 2002; Liu and Yeh, 2004]. These methods constrain
the inversion procedures using spatial covariance functions
that characterize the spatial structure of the inverted variable
field. Kitanidis [1999] showed that the smoothness
constraint commonly used to regularize the ERT inverse
problem (as in (31)) corresponds with a specific spatial
covariance function used in the geostatistically based
inverse formulation. Therefore the geostatistical inversion
approach offers the possibility to include a priori informa-
tion about the structure of the medium through the spatial
covariance functions. It also provides a framework to
incorporate additional information about local-scale elec-
trical and hydraulic state variables in the ERT inversion [Yeh
et al., 2002; Liu and Yeh, 2004]. Furthermore, it offers the
possibility to combine inversion of electric and hydraulic
state variables in a joint electric-hydraulic inversion scheme
[e.g., Yeh and Simunek, 2002, Figure 2]. Although these
geostatistically based inversion methods bear a huge
potential, our study shows that the state-of-the-art inversion
of ERT data sets in conjunction with an a posteriori
interpretation using equivalent transport models also reveals
valuable information about subsurface transport processes
and the underlying hydraulic structure.
[50] Finally, we assumed that the aquifer heterogeneity

could be represented using a second-order stationary Gauss-
ian random field, which assumes that the spatial variability
is fully characterized by the spatial covariogram or the two
point covariance. The Gaussian spatial heterogeneity model
maximizes the entropy of the random field for a given
spatial covariance. This results in disconnected regions of
extreme values [Gomez-Hernandez and Wen, 1998].
Especially for transport, the connectivity of hydraulically
highly conductive regions is very important [e.g., Zinn and
Harvey, 2003]. However, given the difficulties in determin-
ing the spatial covariance function of hydraulic properties
accurately, the characterization of the connectivity of the
hydraulic conductivity from direct measurements seems to
pose even larger problems. In that view, monitoring of the
spatiotemporal transport process is a viable alternative to
determine this connectivity since the effect of the
connectivity is strongly manifested in the transport process.

Appendix A

[51] The arrival time of a particle i at a point x in the
aquifer can be written as follows:

ti xð Þ ¼ t x1ð Þ þ t00 xð Þ þ t0i xð Þ ðA1Þ

where t(x1) is the average particle arrival time at a reference
plane, t00(x) is the deviation of the average particle arrival
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time at location x in a given realization of the velocity field
from the average arrival time at the reference plane, i.e.,
t00(x) = t(x) � t(x1), and t

0
i(x) is the deviation of the particle

arrival time from the average arrival time at location x (in a
given realization of the velocity field), i.e., t0i(x) = ti(x) �
t(x). From their definition, it follows that the travel time
deviations t00(x), t0i(x), and t0j(x

0) are mutually independent.
The two-particle arrival time covariance stt(x, x + h),
which is the covariance of arrival times of two different
particles at locations x and x + h, is

stt x; xþ hð Þ ¼ ti xð Þ � �t x1ð Þð Þ tj xþ hð Þ � �t x1ð Þ
� �	 


¼ t00 xð Þt00 xþ hð Þh i ðA2Þ

According to the definition of the stream tube velocity, vs(x)
(equation (13)) and the particle travel time (equation (A1)) a
first-order expansion of vs(x) is

vs xð Þ 
 x1

t x1ð Þ �
x1t00 xð Þ
t x1ð Þ2

ðA3Þ

Using equation (A3), the first-order estimate of the expected
stream tube velocity and the stream tube spatial covariance
is

vs xð Þh i 
 x1

t x1ð Þ ¼ U1 ðA4Þ

Cvsvs x; xþ hð Þ ¼ vs xð Þ � vs xð Þh ið Þh vs xþ hð Þ � vs xþ hð Þh ið Þi


 x21 t00 xð Þt00 xþ hð Þh i
�t x1ð Þ4

ðA5Þ

Inserting equations (A2) and (A3) in equation (A5) leads to
equation (25).

Notation

a relative resistance error.
b absolute resistance error (W).
c time normalized concentrations (d�1).
C concentration (kg m�3).
C0 initial tracer concentration (kg m�3).
Cf flux or flux averaged concentration (kg

m�3).
Cr resident or volume averaged concentration

(kg m�3).
Cyy spatial covariance of variable y.
d data vector of loge transformed transfer

resistances.
D0 molecular diffusion constant (m2 d�1).
d0 initial or reference data vector of loge

transformed transfer resistances.
Dd local-scale dispersion (m2 d�1).
Deq equivalent dispersion (m2 d�1).
F expected value of loge transformed hydrau-

lic conductivity.
f forward model operator of the Poisson

equation.
f perturbation of loge transformed hydraulic

conductivity.
h separation lag (m).
I current strength (A).

k wave number (m�1).
Ks saturated hydraulic conductivity (m d�1).
L length of simulation domain (m).
m parameter vector of loge transformed sb of

the finite element grid.
m0 initial parameter vector of loge transformed

sb of the finite element grid.
Pe Peclet number.
q Darcy flow velocity (m d�1).
qs solute flux (kg m�2 d�1).
R correlation coefficient.
R roughness matrix
ri
k transfer resistance for current injection at

electrodes i and i + 2 and voltage measure-
ments between electrodes k and k + 2 (W).

Syy(k) spectrum of variable y.
T0 zeroth time moment of a breakthrough

curve (kg m�3 d).
U large-scale uniform advection velocity (m

d�1).
u pore water velocity (m d�1).
vd dispersive velocity fluctuation (m d�1).
vs stream tube velocity (m d�1).
W matrix containing data weights.
x coordinate (m).

X(t, a) coordinate at time t of a particle that was
released at point a (m).

xd dispersive displacement (m).
a regularization parameter.
b parameter of the sb –C calibration relation.

D(xi) grid size (m).
d Dirac function.
dij Kronecker delta.
e zero-mean uncorrelated Gaussian noise.

f0 water-filled porosity.
gi spatial correlation length in direction i (m).
ji electric potential due to current injection at

electrode i (V).
ldL local-scale longitudinal dispersivity length

(m).
ldT local-scale transverse dispersivity length

(m).
leq equivalent dispersivity (m).
ls stream tube dispersivity (m).
ryy spatial correlation of variable y.
sb bulk electrical conductivity(S m�1).

sb,in background bulk electrical conductivity
(S m�1).

stt(x, x + h) covariance of arrival times of two different
particles at locations x and x + h (d2).

st
2(x1) variance of particle arrival times at a

reference plane at distance x1 from the
injection plane (d2).

st
2(x) variance of particle arrival times at point x

in a realisation of the conductivity field (d2).
sy
2 variance of variable y.

t(x) travel time of a particle from the injection
plane to point x (d).

t(f0) tortuosity.
t(x1) average of particle arrival times at a

reference plane at distance x1 from the
injection plane (d).
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t(x) average of particle arrival times at point x in
a realisation of the conductivity field (d).

t00(x) deviation of the average particle arrival time
at location x in a given realization of the
velocity field from the average arrival time
at the reference plane (d).

t0i(x) deviation of the particle arrival time from
the average arrival time at location x in a
given realization of the velocity field (d).

x stream tube coordinate (m).
y hydraulic head (m).
Y objective function.
hyi expected value of y in all realizations of the

hydraulic conductivity field or average of y
in a plane perpendicular to the mean flow
direction.

kyk L2 norm of y.
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ing time on the CRAY T3E supercomputing system. We also gratefully
acknowledge three reviewers, Andrew Binley, Partha Routh, and Jim Yeh,
and the Associate Editor Lee Slater for their constructive and inspiring
comments.

References
Bear, J. (1972), Dynamics of Fluid in Porous Media, Elsevier, New York.
Bellin, A., and Y. Rubin (2004), On the use of peak concentration arrival
times for the inference of hydrogeological parameters, Water Resour.
Res., 40, W07401, doi:10.1029/2003WR002179.

Bellin, A., P. Salandin, and A. Rinaldo (1992), Simulation of dispersion
in heterogeneous porous formations: Statistics, first-order theories,
convergence of computations, Water Resour. Res., 28, 2211–2227.

Binley, A., S. Henry-Poulter, and B. Shaw (1996), Examination of solute
transport in an undisturbed soil column using electrical resistance tomo-
graphy, Water Resour. Res., 32, 763–769.

Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadose zone
flow model parameterisation using cross-borehole radar and resistivity
imaging, J. Hydrol., 267, 147–159.

Cirpka, O. A., and P. K. Kitanidis (2000), Characterization of mixing and
dilution in heterogeneous aquifers by means of local temporal moments,
Water Resour. Res., 36, 1221–1236.

Dagan, G. (1989), Flow and Transport in Porous Formations, Springer,
New York.

Dagan, G., V. Cvetkovic, and A. Shapiro (1992), A solute flux approach to
transport in heterogeneous formations. 1. The general framework, Water
Resour. Res., 28, 1369–1376.

Daily, W. D., A. L. Ramirez, D. J. LaBrecque, and J. Nitao (1992), Elec-
trical resistivity tomography of vadose water movement, Water Resour.
Res., 28, 1429–1442.

Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal
behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially
extended injection, Water Resour. Res., 36, 3605–3614.

Dey, A., and H. F. Morrison (1979), Resistivity modeling for arbitrarily
shaped 3-dimensional structures, Geophysics, 44, 753–780.

Ezzedine, S., Y. Rubin, and J. Chen (1999), Bayesian method for hydro-
geological site characterization using borehole and geophysical survey
data: Theory and application to the Lawrence Livermore National
Laboratory Superfund site, Water Resour. Res., 35, 2671–2683.

Fiori, A. (1996), Finite Peclet extensions of Dagan’s solution to transport in
anisotropic heterogeneous formations, Water Resour. Res., 32, 193–198.

Fiori, A., and G. Dagan (1999), Concentration fluctuations in transport by
groundwater: Comparison between theory and field experiments, Water
Resour. Res., 35, 105–112.

Fiori, A., and G. Dagan (2000), Concentration fluctuations in aquifer
transport. A rigorous first-order solution and applications, J. Contam.
Hydrol., 45, 139–163.

French, H. K., C. Hardbattle, A. Binley, P. Winship, and L. Jakobsen
(2002), Monitoring snowmelt induced unsaturated flow and transport
using electrical resistivity tomography, J. Hydrol., 267, 273–284.

Gelhar, L. W. (1993), Stochastic Subsurface Hydrology, Prentice-Hall,
Upper Saddle River, N. J.

Gomez-Hernandez, J. J., and X.-H. Wen (1998), To be or not to be multi-
Gaussian? A reflection on stochastic hydrogeology, Adv. Water Resour.,
21, 47–61.

Harvey, C. F., and S. M. Gorelick (1995), Mapping hydraulic conductivity:
Sequential conditioning with measurements of solute arrival time,
hydraulic-head, and local conductivity, Water Resour. Res., 31, 1615–
1626.

Hubbard, S. S., and Y. Rubin (2004), Hydrogeophysics overview, in Hydro-
geophysics, edited by Y. Rubin and S. S. Hubbard, pp. 3–21, Springer,
New York.

Hubbard, S. S., Y. Rubin, and E. Majer (1999), Spatial correlation structure
estimation using geophysical and hydrogeological data, Water Resour.
Res., 35, 1809–1825.

Jury, W. A., and G. Sposito (1985), Field calibration and validation of
solute transport models for the unsaturated zone, Soil Sci. Soc. Am. J.,
49, 1331–1341.

Kapoor, V., and P. K. Kitanidis (1998), Concentration fluctuations and
dilution in aquifers, Water Resour. Res., 34, 1181–1193.

Kemna, A. (2000), Tomographic Inversion of Complex Resistivity: Theory
and Application, Der Andere, Osnabrück, Germany.

Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken (2002), Imaging
and characterisation of subsurface solute transport using electrical resis-
tivity tomography (ERT) and equivalent transport models, J. Hydrol.,
267, 125–146.

Kitanidis, P. K. (1999), Generalized covariance functions associated with
the Laplace equation and their use in interpolation and inverse problems,
Water Resour. Res., 35, 1361–1367.

Kraichnan, R. H. (1970), Diffusion by a random velocity field, Phys.
Fluids, 13, 22–31.

LaBrecque, D. J., and S. H. Ward (1990), Two-dimensional cross-borehole
resistivity model fitting, in Geotechnical and Environmental Geophysics,
vol. III, edited by S. H. Ward, pp. 51–74, Soc. of Explor. Geophys.,
Tulsa, Okla.

LaBrecque, D. J., and X. Yang (2001), Difference inversion of ERT data: A
fast inversion method for 3D in situ monitoring, J. Environ. Eng. Geo-
phys., 5, 83–90.

LaBrecque, D. J., M. Miletto, W. D. Daily, A. L. Ramirez, and E. Owen
(1996), The effects of noise on Occam’s inversion of resistivity tomog-
raphy data, Geophysics, 61, 538–548.

Lesmes, L., and S. Friedman (2004), The relationships between the
electrical and hydrological properties of rocks and soil, in Hydrogeophys-
ics, edited by Y. Rubin and S. S. Hubbard, pp. 87–128, Springer, New
York.

Liu, S., and T.-C. J. Yeh (2004), An integrative approach for monitoring
water movement in the vadose zone, Vadose Zone J., 3, 681–692.

Morelli, G., and D. J. LaBrecque (1996), Advances in ERT modeling, Eur.
J. Environ. Eng. Geophys., 1, 171–186.

Neuendorf, O. (1997), Numerische 3D-Simulation des Stofftransports in
einem heterogenen Aquifer, report, Forschungszentrum Jülich GmbH,
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