000046232 001__ 46232
000046232 005__ 20230426083056.0
000046232 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000046232 0247_ $$2DOI$$a10.1103/PhysRevB.72.045402
000046232 0247_ $$2WOS$$aWOS:000230890300141
000046232 0247_ $$2Handle$$a2128/1412
000046232 037__ $$aPreJuSER-46232
000046232 041__ $$aeng
000046232 082__ $$a530
000046232 084__ $$2WoS$$aPhysics, Condensed Matter
000046232 1001_ $$0P:(DE-Juel1)VDB37182$$aMokrousov, Y.$$b0$$uFZJ
000046232 245__ $$aFull-potential linearized augmented plane-wave method for one-dimensional systems: Gold nanowire and iron monowires in a gold tube
000046232 260__ $$aCollege Park, Md.$$bAPS$$c2005
000046232 300__ $$a045402
000046232 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046232 3367_ $$2DataCite$$aOutput Types/Journal article
000046232 3367_ $$00$$2EndNote$$aJournal Article
000046232 3367_ $$2BibTeX$$aARTICLE
000046232 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046232 3367_ $$2DRIVER$$aarticle
000046232 440_0 $$04919$$aPhysical Review B$$v72$$x1098-0121
000046232 500__ $$aRecord converted from VDB: 12.11.2012
000046232 520__ $$aWe present an implementation of the full-potential linearized augmented plane-wave (FLAPW) method for carrying out ab initio calculations of the ground state electronic properties of (magnetic) metallic nanowires and nanotubes based on the density-functional theory (DFT). The method is truly one-dimensional, uses explicitly a wire geometry and is realized as an extension of the FLEUR code. It includes a wide variety of chiral symmetries known for tubular and other one-dimensional systems. A comparative study shows that in this geometry computations are considerably faster than the widely used supercell approach. The method was applied to some typical model structures explored in the field of nanospintronics: the gold nanowire Au(6,0), the free-standing Fe monowire, and the hybrid structure Fe@Au(6,0). Their atomic structures are determined by total energy minimization and force calculations. We calculated the magnetic properties including the magnetocrystalline anisotropy energies, the band structures, and densities of states in these systems using the local density approximation (LDA) and the generalized gradient approximation (GGA) to the DFT. The results agree nicely with the data available in the literature. We found that Fe wires are ferromagnetic and are prone to a Peierls dimerization. The Fe filled gold nanotube shows a large negative spin polarization at the Fermi level, which makes this structure a possible candidate for spin-dependent transport applications in the field of spintronics. The Au tube encasing the Fe wire changes the magnetization direction of the Fe wire and increases the magnetocrystalline anisotropy energy by an order of magnitude.
000046232 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000046232 588__ $$aDataset connected to Web of Science
000046232 650_7 $$2WoSType$$aJ
000046232 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1$$uFZJ
000046232 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000046232 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.72.045402$$bAmerican Physical Society (APS)$$d2005-07-01$$n4$$p045402$$tPhysical Review B$$v72$$x1098-0121$$y2005
000046232 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.72.045402$$gVol. 72, p. 045402$$n4$$p045402$$q72<045402$$tPhysical review / B$$v72$$x1098-0121$$y2005
000046232 8567_ $$uhttp://hdl.handle.net/2128/1412$$uhttp://dx.doi.org/10.1103/PhysRevB.72.045402
000046232 8564_ $$uhttps://juser.fz-juelich.de/record/46232/files/72668.pdf$$yOpenAccess
000046232 8564_ $$uhttps://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000046232 8564_ $$uhttps://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000046232 8564_ $$uhttps://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000046232 909CO $$ooai:juser.fz-juelich.de:46232$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000046232 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000046232 9141_ $$y2005
000046232 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046232 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000046232 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000046232 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000046232 970__ $$aVDB:(DE-Juel1)72668
000046232 980__ $$aVDB
000046232 980__ $$aJUWEL
000046232 980__ $$aConvertedRecord
000046232 980__ $$ajournal
000046232 980__ $$aI:(DE-Juel1)PGI-1-20110106
000046232 980__ $$aI:(DE-Juel1)VDB381
000046232 980__ $$aUNRESTRICTED
000046232 980__ $$aFullTexts
000046232 9801_ $$aFullTexts
000046232 981__ $$aI:(DE-Juel1)PGI-1-20110106
000046232 981__ $$aI:(DE-Juel1)VDB381
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/354056a0
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.279.5348.208
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.289.5479.606
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.3775
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.291.5502.288
000046232 999C5 $$2Crossref$$o1999$$y1999
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/29954
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.122477
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.235418
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01551
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.4502
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02970
000046232 999C5 $$1$$2Crossref$$o Carbon Nanotubes 2001$$tCarbon Nanotubes$$y2001
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0008-6223(02)00102-1
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/372761a0
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00339-002-2041-0
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja046151+
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.199403851
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.075402
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.257203
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.453357
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.235405
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.144434
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/45/028
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.12.3060
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.205503
000046232 999C5 $$1$$2Crossref$$o Planewaves, Pseudopotentials and the LAPW Method 1994$$tPlanewaves, Pseudopotentials and the LAPW Method$$y1994
000046232 999C5 $$2Crossref$$o1981$$y1981
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.4124
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.121401
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.266102
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/27399
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.057201
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.890
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159$$p1200 -$$tCan. J. Phys.$$v58$$y1980
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0009-2614(00)00541-8
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.40.7565
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.193404
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.052402
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(83)90098-7
000046232 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.4954$$pR4954 -$$tPhys. Rev. B$$v50$$y1994