001     46232
005     20230426083056.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.72.045402
|2 DOI
024 7 _ |a WOS:000230890300141
|2 WOS
024 7 _ |a 2128/1412
|2 Handle
037 _ _ |a PreJuSER-46232
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Mokrousov, Y.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB37182
245 _ _ |a Full-potential linearized augmented plane-wave method for one-dimensional systems: Gold nanowire and iron monowires in a gold tube
260 _ _ |a College Park, Md.
|b APS
|c 2005
300 _ _ |a 045402
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 72
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present an implementation of the full-potential linearized augmented plane-wave (FLAPW) method for carrying out ab initio calculations of the ground state electronic properties of (magnetic) metallic nanowires and nanotubes based on the density-functional theory (DFT). The method is truly one-dimensional, uses explicitly a wire geometry and is realized as an extension of the FLEUR code. It includes a wide variety of chiral symmetries known for tubular and other one-dimensional systems. A comparative study shows that in this geometry computations are considerably faster than the widely used supercell approach. The method was applied to some typical model structures explored in the field of nanospintronics: the gold nanowire Au(6,0), the free-standing Fe monowire, and the hybrid structure Fe@Au(6,0). Their atomic structures are determined by total energy minimization and force calculations. We calculated the magnetic properties including the magnetocrystalline anisotropy energies, the band structures, and densities of states in these systems using the local density approximation (LDA) and the generalized gradient approximation (GGA) to the DFT. The results agree nicely with the data available in the literature. We found that Fe wires are ferromagnetic and are prone to a Peierls dimerization. The Fe filled gold nanotube shows a large negative spin polarization at the Fermi level, which makes this structure a possible candidate for spin-dependent transport applications in the field of spintronics. The Au tube encasing the Fe wire changes the magnetization direction of the Fe wire and increases the magnetocrystalline anisotropy energy by an order of magnitude.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Bihlmayer, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Blügel, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.72.045402
|b American Physical Society (APS)
|d 2005-07-01
|n 4
|p 045402
|3 journal-article
|2 Crossref
|t Physical Review B
|v 72
|y 2005
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.72.045402
|g Vol. 72, p. 045402
|p 045402
|n 4
|q 72<045402
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 72
|y 2005
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.72.045402
|u http://hdl.handle.net/2128/1412
856 4 _ |u https://juser.fz-juelich.de/record/46232/files/72668.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46232/files/72668.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:46232
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)72668
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB381
999 C 5 |a 10.1038/354056a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.279.5348.208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.289.5479.606
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.3775
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.291.5502.288
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 1999
|2 Crossref
|o 1999
999 C 5 |a 10.1038/29954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.122477
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.235418
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature01551
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.4502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02970
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1
|y 2001
|2 Crossref
|t Carbon Nanotubes
|o Carbon Nanotubes 2001
999 C 5 |a 10.1016/S0008-6223(02)00102-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/372761a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-002-2041-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja046151+
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.199403851
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.075402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.257203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.453357
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.235405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.144434
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/16/45/028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.12.3060
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.19.1706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.205503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1
|y 1994
|2 Crossref
|t Planewaves, Pseudopotentials and the LAPW Method
|o Planewaves, Pseudopotentials and the LAPW Method 1994
999 C 5 |y 1981
|2 Crossref
|o 1981
999 C 5 |a 10.1103/PhysRevLett.85.4124
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.121401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.266102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/27399
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.057201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.890
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|p 1200 -
|2 Crossref
|t Can. J. Phys.
|v 58
|y 1980
999 C 5 |a 10.1016/S0009-2614(00)00541-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.40.7565
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.193404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.052402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(83)90098-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.4954
|9 -- missing cx lookup --
|p R4954 -
|2 Crossref
|t Phys. Rev. B
|v 50
|y 1994


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21