000046392 001__ 46392
000046392 005__ 20230426083056.0
000046392 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000046392 0247_ $$2DOI$$a10.1103/PhysRevB.72.033405
000046392 0247_ $$2WOS$$aWOS:000230890200041
000046392 0247_ $$2Handle$$a2128/1416
000046392 037__ $$aPreJuSER-46392
000046392 041__ $$aeng
000046392 082__ $$a530
000046392 084__ $$2WoS$$aPhysics, Condensed Matter
000046392 1001_ $$0P:(DE-Juel1)VDB48337$$aDa Silva, J. L. F.$$b0$$uFZJ
000046392 245__ $$aFirst-principles investigation of the role of registry relaxations on stepped Cu(100) surfaces
000046392 260__ $$aCollege Park, Md.$$bAPS$$c2005
000046392 300__ $$a033405
000046392 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046392 3367_ $$2DataCite$$aOutput Types/Journal article
000046392 3367_ $$00$$2EndNote$$aJournal Article
000046392 3367_ $$2BibTeX$$aARTICLE
000046392 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046392 3367_ $$2DRIVER$$aarticle
000046392 440_0 $$04919$$aPhysical Review B$$v72$$x1098-0121
000046392 500__ $$aRecord converted from VDB: 12.11.2012
000046392 520__ $$aThe multilayer relaxations of the (311), (511), (711), and (911) Cu surfaces are investigated using the all-electron full-potential linearized augmented plane-wave (FLAPW) method. We found relaxation sequences like -+-(...), --+-(...), ---+-(...), and ----+-(...) for (311), (511), (711), and (911), respectively, where the - and + signs indicate contraction and expansion, respectively, of the interlayer spacing. Furthermore, we found that the first-neighbor distances between the Cu atoms in the step edges do not depend on the surface termination, i.e., d(SC-CC) is the same for all studied surfaces. Our FLAPW relaxation sequences are in full agreement with quantitative low-energy electron diffraction (LEED) results, as well as with the multilayer relaxation-coordination trend proposed recently. However, large discrepancies are found for the magnitude of the interlayer relaxations, particularly for those involving atoms at the step edges. From our calculations, we suggest that these discrepancies are due to the fact that the atomic displacements parallel to the surface were not take into account in the quantitative analysis of the LEED intensities, which we found to play an important role for a quantitative description of the stepped Cu (2n-1, 11) surfaces.
000046392 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000046392 542__ $$2Crossref$$i2005-07-08$$uhttp://link.aps.org/licenses/aps-default-license
000046392 588__ $$aDataset connected to Web of Science
000046392 650_7 $$2WoSType$$aJ
000046392 7001_ $$0P:(DE-Juel1)VDB3933$$aSchroeder, K.$$b1$$uFZJ
000046392 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000046392 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.72.033405$$bAmerican Physical Society (APS)$$d2005-07-08$$n3$$p033405$$tPhysical Review B$$v72$$x1098-0121$$y2005
000046392 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.72.033405$$gVol. 72, p. 033405$$n3$$p033405$$q72<033405$$tPhysical review / B$$v72$$x1098-0121$$y2005
000046392 8567_ $$uhttp://hdl.handle.net/2128/1416$$uhttp://dx.doi.org/10.1103/PhysRevB.72.033405
000046392 8564_ $$uhttps://juser.fz-juelich.de/record/46392/files/73371.pdf$$yOpenAccess
000046392 8564_ $$uhttps://juser.fz-juelich.de/record/46392/files/73371.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000046392 8564_ $$uhttps://juser.fz-juelich.de/record/46392/files/73371.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000046392 8564_ $$uhttps://juser.fz-juelich.de/record/46392/files/73371.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000046392 909CO $$ooai:juser.fz-juelich.de:46392$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000046392 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000046392 9141_ $$y2005
000046392 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000046392 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x0
000046392 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x1
000046392 970__ $$aVDB:(DE-Juel1)73371
000046392 980__ $$aVDB
000046392 980__ $$aJUWEL
000046392 980__ $$aConvertedRecord
000046392 980__ $$ajournal
000046392 980__ $$aI:(DE-Juel1)PGI-2-20110106
000046392 980__ $$aI:(DE-Juel1)PGI-1-20110106
000046392 980__ $$aUNRESTRICTED
000046392 980__ $$aFullTexts
000046392 9801_ $$aFullTexts
000046392 981__ $$aI:(DE-Juel1)PGI-2-20110106
000046392 981__ $$aI:(DE-Juel1)PGI-1-20110106
000046392 999C5 $$1M.-C. Desjonquères$$2Crossref$$oM.-C. Desjonquères Concepts in Surface Science 1995$$tConcepts in Surface Science$$y1995
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(88)90086-6
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(91)90631-5
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.15446
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.155407
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.9751
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)01173-6
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.115405
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.245411
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.245432
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.136102
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.045408
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.136.B864
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000046392 999C5 $$1D. J. Singh$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-2312-0$$y1994
000046392 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188