000000464 001__ 464
000000464 005__ 20240610115317.0
000000464 0247_ $$2DOI$$a10.1088/0953-8984/20/40/404209
000000464 0247_ $$2WOS$$aWOS:000259153200010
000000464 037__ $$aPreJuSER-464
000000464 041__ $$aeng
000000464 082__ $$a530
000000464 084__ $$2WoS$$aPhysics, Condensed Matter
000000464 1001_ $$0P:(DE-Juel1)130920$$aRipoll, M.$$b0$$uFZJ
000000464 245__ $$aMesoscale hydrodynamics simulations of attractive rod-like colloids in shear flow
000000464 260__ $$aBristol$$bIOP Publ.$$c2008
000000464 300__ $$a404209
000000464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000464 3367_ $$2DataCite$$aOutput Types/Journal article
000000464 3367_ $$00$$2EndNote$$aJournal Article
000000464 3367_ $$2BibTeX$$aARTICLE
000000464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000464 3367_ $$2DRIVER$$aarticle
000000464 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v20$$x0953-8984
000000464 500__ $$aRecord converted from VDB: 12.11.2012
000000464 520__ $$aSuspensions of rod-like colloids show in equilibrium an isotropic-nematic coexistence region, which depends on the strength of an attractive interaction between the rods. We study the behavior of this system in shear flow for various interaction strengths. A hybrid simulation approach is employed, which consists of a mesoscale particle-based hydrodynamics technique (multi-particle collision dynamics) for the solvent and molecular dynamics simulations for the colloidal rods. The shear flow induces alignment in the initially isotropic phase, which generated an additional free volume around each rod and causes the densification of the isotropic phase at the expense of an erosion of the initially nematic phase. Furthermore, the nematic phase exhibits a collective rotational motion. The associated rotational time decreases linearly in 1/(gamma)over dot with increasing shear rate (gamma)over dot, and increases with increasing attraction strength between the rods. The density difference between these two regions at different shear rates allows us to determine the binodal line of the phase diagram. For large applied shear rates, the difference between the phases disappears in favor of a homogeneous flow-aligned state.
000000464 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000000464 588__ $$aDataset connected to Web of Science
000000464 650_7 $$2WoSType$$aJ
000000464 7001_ $$0P:(DE-Juel1)131039$$aWinkler, R. G.$$b1$$uFZJ
000000464 7001_ $$0P:(DE-Juel1)VDB14444$$aMussawisade, K.$$b2$$uFZJ
000000464 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b3$$uFZJ
000000464 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/20/40/404209$$gVol. 20, p. 404209$$p404209$$q20<404209$$tJournal of physics / Condensed matter$$v20$$x0953-8984$$y2008
000000464 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/20/40/404209
000000464 909CO $$ooai:juser.fz-juelich.de:464$$pVDB
000000464 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000000464 9141_ $$y2008
000000464 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000464 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000000464 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000000464 970__ $$aVDB:(DE-Juel1)100940
000000464 980__ $$aVDB
000000464 980__ $$aConvertedRecord
000000464 980__ $$ajournal
000000464 980__ $$aI:(DE-Juel1)ICS-2-20110106
000000464 980__ $$aI:(DE-Juel1)VDB1045
000000464 980__ $$aUNRESTRICTED
000000464 981__ $$aI:(DE-Juel1)IBI-5-20200312
000000464 981__ $$aI:(DE-Juel1)IAS-2-20090406
000000464 981__ $$aI:(DE-Juel1)ICS-2-20110106
000000464 981__ $$aI:(DE-Juel1)VDB1045