001     464
005     20240610115317.0
024 7 _ |2 DOI
|a 10.1088/0953-8984/20/40/404209
024 7 _ |2 WOS
|a WOS:000259153200010
037 _ _ |a PreJuSER-464
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Ripoll, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)130920
245 _ _ |a Mesoscale hydrodynamics simulations of attractive rod-like colloids in shear flow
260 _ _ |a Bristol
|b IOP Publ.
|c 2008
300 _ _ |a 404209
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics: Condensed Matter
|x 0953-8984
|0 3703
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Suspensions of rod-like colloids show in equilibrium an isotropic-nematic coexistence region, which depends on the strength of an attractive interaction between the rods. We study the behavior of this system in shear flow for various interaction strengths. A hybrid simulation approach is employed, which consists of a mesoscale particle-based hydrodynamics technique (multi-particle collision dynamics) for the solvent and molecular dynamics simulations for the colloidal rods. The shear flow induces alignment in the initially isotropic phase, which generated an additional free volume around each rod and causes the densification of the isotropic phase at the expense of an erosion of the initially nematic phase. Furthermore, the nematic phase exhibits a collective rotational motion. The associated rotational time decreases linearly in 1/(gamma)over dot with increasing shear rate (gamma)over dot, and increases with increasing attraction strength between the rods. The density difference between these two regions at different shear rates allows us to determine the binodal line of the phase diagram. For large applied shear rates, the difference between the phases disappears in favor of a homogeneous flow-aligned state.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Winkler, R. G.
|b 1
|u FZJ
|0 P:(DE-Juel1)131039
700 1 _ |a Mussawisade, K.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB14444
700 1 _ |a Gompper, G.
|b 3
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1088/0953-8984/20/40/404209
|g Vol. 20, p. 404209
|p 404209
|q 20<404209
|0 PERI:(DE-600)1472968-4
|t Journal of physics / Condensed matter
|v 20
|y 2008
|x 0953-8984
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/20/40/404209
909 C O |o oai:juser.fz-juelich.de:464
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-2
|l Theorie der Weichen Materie und Biophysik
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 1
970 _ _ |a VDB:(DE-Juel1)100940
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21