000046406 001__ 46406
000046406 005__ 20180210140030.0
000046406 0247_ $$2pmid$$apmid:16049752
000046406 0247_ $$2DOI$$a10.1007/s11120-005-0410-1
000046406 0247_ $$2WOS$$aWOS:000230845200007
000046406 037__ $$aPreJuSER-46406
000046406 041__ $$aeng
000046406 082__ $$a580
000046406 084__ $$2WoS$$aPlant Sciences
000046406 1001_ $$0P:(DE-HGF)0$$aChow, W. S.$$b0
000046406 245__ $$aPhotoinactivation of Photosystem II in leaves
000046406 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2005
000046406 300__ $$a35 - 41
000046406 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046406 3367_ $$2DataCite$$aOutput Types/Journal article
000046406 3367_ $$00$$2EndNote$$aJournal Article
000046406 3367_ $$2BibTeX$$aARTICLE
000046406 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046406 3367_ $$2DRIVER$$aarticle
000046406 440_0 $$014201$$aPhotosynthesis Research$$v84$$x0166-8595$$y1
000046406 500__ $$aRecord converted from VDB: 12.11.2012
000046406 520__ $$aPhotoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kDeltax, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(-kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(-kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(-kx), the quantum yield of photoinactivation of PS II can be defined as -dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1micromol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 10(7) photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.
000046406 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000046406 588__ $$aDataset connected to Web of Science, Pubmed
000046406 650_2 $$2MeSH$$aChloroplasts: metabolism
000046406 650_2 $$2MeSH$$aChloroplasts: radiation effects
000046406 650_2 $$2MeSH$$aLight
000046406 650_2 $$2MeSH$$aModels, Biological
000046406 650_2 $$2MeSH$$aPhotosystem II Protein Complex: metabolism
000046406 650_2 $$2MeSH$$aPhotosystem II Protein Complex: radiation effects
000046406 650_2 $$2MeSH$$aPlant Leaves: metabolism
000046406 650_2 $$2MeSH$$aPlant Leaves: radiation effects
000046406 650_7 $$00$$2NLM Chemicals$$aPhotosystem II Protein Complex
000046406 650_7 $$2WoSType$$aJ
000046406 65320 $$2Author$$alaw of reciprocity
000046406 65320 $$2Author$$aphotoinactivation of Photosystem II
000046406 65320 $$2Author$$aquantum yield of photoinactivation
000046406 65320 $$2Author$$aquenching of excitation energy
000046406 7001_ $$0P:(DE-HGF)0$$aLee, A.-Y.$$b1
000046406 7001_ $$0P:(DE-HGF)0$$aHe, J.$$b2
000046406 7001_ $$0P:(DE-HGF)0$$aHendrickson, L.$$b3
000046406 7001_ $$0P:(DE-HGF)0$$aHong, Y.-N.$$b4
000046406 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, S.$$b5$$uFZJ
000046406 773__ $$0PERI:(DE-600)1475688-2$$a10.1007/s11120-005-0410-1$$gVol. 84, p. 35 - 41$$p35 - 41$$q84<35 - 41$$tPhotosynthesis research$$v84$$x0166-8595$$y2005
000046406 8567_ $$uhttp://dx.doi.org/10.1007/s11120-005-0410-1
000046406 909CO $$ooai:juser.fz-juelich.de:46406$$pVDB
000046406 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000046406 9141_ $$y2005
000046406 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046406 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000046406 970__ $$aVDB:(DE-Juel1)73406
000046406 980__ $$aVDB
000046406 980__ $$aConvertedRecord
000046406 980__ $$ajournal
000046406 980__ $$aI:(DE-Juel1)IBG-2-20101118
000046406 980__ $$aUNRESTRICTED
000046406 981__ $$aI:(DE-Juel1)IBG-2-20101118
000046406 981__ $$aI:(DE-Juel1)ICG-3-20090406