000046412 001__ 46412
000046412 005__ 20230426083056.0
000046412 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000046412 0247_ $$2DOI$$a10.1103/PhysRevB.72.035423
000046412 0247_ $$2WOS$$aWOS:000230890200167
000046412 0247_ $$2Handle$$a2128/1417
000046412 037__ $$aPreJuSER-46412
000046412 041__ $$aeng
000046412 082__ $$a530
000046412 084__ $$2WoS$$aPhysics, Condensed Matter
000046412 1001_ $$0P:(DE-HGF)0$$aCaciuc, V.$$b0
000046412 245__ $$aAb initio investigation of NC-AFM image contrast on InAs(110) surface
000046412 260__ $$aCollege Park, Md.$$bAPS$$c2005
000046412 300__ $$a035423
000046412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046412 3367_ $$2DataCite$$aOutput Types/Journal article
000046412 3367_ $$00$$2EndNote$$aJournal Article
000046412 3367_ $$2BibTeX$$aARTICLE
000046412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046412 3367_ $$2DRIVER$$aarticle
000046412 440_0 $$04919$$aPhysical Review B$$v72$$x1098-0121
000046412 500__ $$aRecord converted from VDB: 12.11.2012
000046412 520__ $$aIn the present work we report ab initio pseudopotential calculations based on density functional theory to investigate the noncontact atomic force microscopy (NC-AFM) image contrast on the InAs(110) (1 x 1) surface. The foremost tip structure is modeled by a SiH3 tip. The effect of the tip-induced surface relaxations on the calculated forces was investigated for the tip above As and In atoms. The force curves corresponding to these vertical scans show an hysteretic behavior and this effect causes an energy dissipation of 0.3 (tip on top of As) and 1.8 eV (tip on top of In), respectively. The presence of this hysteresis suggests that stable NC-AFM images can be obtained for tip-sample distances before this instability. In this stable regime the force curves obtained for perturbed (due to tip-sample interaction) and unperturbed InAs(110) surface exhibit the same qualitative behavior. From the calculated forces for the unperturbed InAs(110) surface on a large number of grid points in real space we obtained maps of constant frequency shifts. The influence of long-range van der Waals forces on the simulated AFM images due to the macroscopic part of the tip was taken into account by an empirical model. The overall structure and the corrugation of the simulated NC-AFM images are in good agreement with the experimental results and allow us to explain the experimentally observed features of the image contrast mechanism on the basis of the calculated short-range chemical tip-sample interaction forces.
000046412 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000046412 542__ $$2Crossref$$i2005-07-08$$uhttp://link.aps.org/licenses/aps-default-license
000046412 588__ $$aDataset connected to Web of Science
000046412 650_7 $$2WoSType$$aJ
000046412 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b1$$uFZJ
000046412 7001_ $$0P:(DE-HGF)0$$aHölscher, H.$$b2
000046412 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.72.035423$$bAmerican Physical Society (APS)$$d2005-07-08$$n3$$p035423$$tPhysical Review B$$v72$$x1098-0121$$y2005
000046412 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.72.035423$$gVol. 72, p. 035423$$n3$$p035423$$q72<035423$$tPhysical review / B$$v72$$x1098-0121$$y2005
000046412 8567_ $$uhttp://hdl.handle.net/2128/1417$$uhttp://dx.doi.org/10.1103/PhysRevB.72.035423
000046412 8564_ $$uhttps://juser.fz-juelich.de/record/46412/files/73413.pdf$$yOpenAccess
000046412 8564_ $$uhttps://juser.fz-juelich.de/record/46412/files/73413.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000046412 8564_ $$uhttps://juser.fz-juelich.de/record/46412/files/73413.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000046412 8564_ $$uhttps://juser.fz-juelich.de/record/46412/files/73413.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000046412 909CO $$ooai:juser.fz-juelich.de:46412$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000046412 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000046412 9141_ $$y2005
000046412 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000046412 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000046412 970__ $$aVDB:(DE-Juel1)73413
000046412 980__ $$aVDB
000046412 980__ $$aJUWEL
000046412 980__ $$aConvertedRecord
000046412 980__ $$ajournal
000046412 980__ $$aI:(DE-Juel1)PGI-1-20110106
000046412 980__ $$aUNRESTRICTED
000046412 980__ $$aFullTexts
000046412 9801_ $$aFullTexts
000046412 981__ $$aI:(DE-Juel1)PGI-1-20110106
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.119704
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.161307
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.165301
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1527995
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1566085
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1415346
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1382628
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.073304
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(98)00543-1
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.2837
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.13617
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.267.5194.68
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.270.5242.1646
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.930
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.347347
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/64/2/202
000046412 999C5 $$1S. Morita$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-56019-4$$y2002
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0167-5729(02)00077-8
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.678
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(98)00548-0
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0079-6816(00)00015-0
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.6967
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.16010
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.9968
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.11051
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.124399
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.075401
000046412 999C5 $$1H. Hölscher$$2Crossref$$9-- missing cx lookup --$$a10.1007/s003390100724$$pS35 -$$tAppl. Phys. A: Mater. Sci. Process.$$v75$$y2001
000046412 999C5 $$1W. Kohn$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133$$p1133 -$$tPhys. Rev.$$v140$$y1965
000046412 999C5 $$1S. H. Vosko$$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159$$p1200 -$$tCan. J. Phys.$$v58$$y1980
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.64.1045
000046412 999C5 $$1R. Berger$$2Crossref$$oR. Berger Molecular Dynamics on Parallel Computers, Workshop am John von Neumann Institut für Computing, Jülich, 08–10. Feb. 1999 2000$$tMolecular Dynamics on Parallel Computers, Workshop am John von Neumann Institut für Computing, Jülich, 08–10. Feb. 1999$$y2000
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.7799
000046412 999C5 $$2Crossref$$oLandolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (New Series), Group III: Crystal and Solid State Physics 1984$$tLandolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (New Series), Group III: Crystal and Solid State Physics$$y1984
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(99)00552-8
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.125417
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.256101
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.10835
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.11631
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.245324
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.6188
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.2074
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.2373
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.363680
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.11639
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.245323
000046412 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(03)00076-1