001     4648
005     20200402205613.0
024 7 _ |2 pmid
|a pmid:19433222
024 7 _ |2 DOI
|a 10.1016/j.jbiotec.2009.03.010
024 7 _ |2 WOS
|a WOS:000266672600012
037 _ _ |a PreJuSER-4648
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
100 1 _ |0 P:(DE-HGF)0
|a Guterl, K.
|b 0
245 _ _ |a Uneven Twins: Comparison of two enantiocomplementary hydroxynitrile lyases with a/ß--hydrolase fold
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2009
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3109
|a Journal of Biotechnology
|v 141
|x 0168-1656
|y 3
500 _ _ |a The authors thank Julich Chiral Solutions/Codexis for providing MeHNL-DNA and MeHNL-Cys81Ala expressing E. coli cells, Astrid Wirtz for HPLC measurements and Sabine Kruschinski for technical assistance. This work was partially supported by the BMBF in frame of project "Biokatalytische Hydrocyanierung & Hydroformylierung (BioHydroForm) FKZ 0313402C" and by the Deutsche Forschungsgemeinschaft in frame of the research training group "BioNoCo" GK 1166.
520 _ _ |a Hydroxynitrile lyases (HNLs) are applied in technical processes for the synthesis of chiral cyanohydrins. Here we describe the thorough characterization of the recently discovered R-hydroxynitrile lyase from Arabidopsis thaliana and its S-selective counterpart from Manihot esculenta (MeHNL) concerning their properties relevant for technical applications. The results are compared to available data of the structurally related S-HNL from Hevea brasiliensis (HbHNL), which is frequently applied in technical processes. Whereas substrate ranges are highly similar for all three enzymes, the stability of MeHNL with respect to higher temperature and low pH-values is superior to the other HNLs with alpha/beta-hydrolase fold. This enhanced stability is supposed to be due to the ability of MeHNL to form tetramers in solution, while HbHNL and AtHNL are dimers. The different inactivation pathways, deduced by means of circular dichroism, tryptophan fluorescence and static light scattering further support these results. Our data suggest different possibilities to stabilize MeHNL and AtHNL for technical applications: whereas the application of crude cell extracts is appropriate for MeHNL, AtHNL is stabilized by addition of polyols. In addition, the molecular reason for the inhibition of MeHNL and HbHNL by acetate could be elucidated, whereas no such inhibition was observed with AtHNL.
536 _ _ |0 G:(DE-Juel1)FUEK443
|2 G:(DE-HGF)
|a Programm Biosoft
|c N03
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Acetonitriles: metabolism
650 _ 2 |2 MeSH
|a Aldehyde-Lyases: chemistry
650 _ 2 |2 MeSH
|a Aldehyde-Lyases: genetics
650 _ 2 |2 MeSH
|a Aldehyde-Lyases: metabolism
650 _ 2 |2 MeSH
|a Amino Acid Sequence
650 _ 2 |2 MeSH
|a Arabidopsis: enzymology
650 _ 2 |2 MeSH
|a Arabidopsis: genetics
650 _ 2 |2 MeSH
|a Enzyme Stability
650 _ 2 |2 MeSH
|a Escherichia coli: genetics
650 _ 2 |2 MeSH
|a Hevea: enzymology
650 _ 2 |2 MeSH
|a Hevea: genetics
650 _ 2 |2 MeSH
|a Hydrogen-Ion Concentration
650 _ 2 |2 MeSH
|a Hydrolases: genetics
650 _ 2 |2 MeSH
|a Manihot: enzymology
650 _ 2 |2 MeSH
|a Manihot: genetics
650 _ 2 |2 MeSH
|a Molecular Sequence Data
650 _ 2 |2 MeSH
|a Plant Proteins: genetics
650 _ 2 |2 MeSH
|a Plant Proteins: metabolism
650 _ 2 |2 MeSH
|a Recombinant Proteins: genetics
650 _ 2 |2 MeSH
|a Recombinant Proteins: metabolism
650 _ 2 |2 MeSH
|a Stereoisomerism
650 _ 2 |2 MeSH
|a Substrate Specificity
650 _ 2 |2 MeSH
|a Temperature
650 _ 2 |2 MeSH
|a Time Factors
650 _ 7 |0 0
|2 NLM Chemicals
|a Acetonitriles
650 _ 7 |0 0
|2 NLM Chemicals
|a Plant Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Recombinant Proteins
650 _ 7 |0 532-28-5
|2 NLM Chemicals
|a mandelonitrile
650 _ 7 |0 EC 3.-
|2 NLM Chemicals
|a Hydrolases
650 _ 7 |0 EC 4.1.2.-
|2 NLM Chemicals
|a Aldehyde-Lyases
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Asymmetric carboligation
653 2 0 |2 Author
|a Cyanohydrins
653 2 0 |2 Author
|a Enzyme catalysis
653 2 0 |2 Author
|a Enzyme stability
653 2 0 |2 Author
|a Oxynitrilase
700 1 _ |0 P:(DE-HGF)0
|a Andexer, J.N.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Sehl, T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a von Langermann, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Frindi-Wosch, I.
|b 4
700 1 _ |0 P:(DE-Juel1)VDB72840
|a Rosenkranz, T.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)131961
|a Fitter, J.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Gruber, K.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Kragl, U.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Eggert, T.
|b 9
700 1 _ |0 P:(DE-Juel1)131522
|a Pohl, M.
|b 10
|u FZJ
773 _ _ |0 PERI:(DE-600)2016476-2
|a 10.1016/j.jbiotec.2009.03.010
|g Vol. 141
|q 141
|t Journal of biotechnology
|v 141
|x 0168-1656
|y 2009
856 7 _ |u http://dx.doi.org/10.1016/j.jbiotec.2009.03.010
909 C O |o oai:juser.fz-juelich.de:4648
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK443
|a DE-HGF
|b Schlüsseltechnologien
|k N03
|l BioSoft
|v Programm Biosoft
|x 0
|z entfällt
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)ISB-2-20090406
|d 31.12.2010
|g ISB
|k ISB-2
|l Molekulare Biophysik
|x 0
970 _ _ |a VDB:(DE-Juel1)111796
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21