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Dynamics of polymers in a particle-based mesoscopic solvent
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We study the dynamics of flexible polymer chains in solution by combining multiparticle-collision
dynamics �MPCD�, a mesoscale simulation method, and molecular-dynamics simulations. Polymers
with and without excluded-volume interactions are considered. With an appropriate choice of the
collision time step for the MPCD solvent, hydrodynamic interactions build up properly. For the
center-of-mass diffusion coefficient, scaling with respect to polymer length is found to hold already
for rather short chains. The center-of-mass velocity autocorrelation function displays a long-time tail
which decays algebraically as �Dt�−3/2 as a function of time t, where D is the diffusion coefficient.
The analysis of the intramolecular dynamics in terms of Rouse modes yields excellent agreement
between simulation data and results of the Zimm model for the mode-number dependence of the
mode-amplitude correlation functions. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2041527�
I. INTRODUCTION

The dynamical behavior of macromolecules in solution
is strongly affected or even dominated by hydrodynamic
interactions.1,2 These interactions have to be taken into ac-
count adequately in computer simulations of dilute and se-
midilute polymer solutions. Such a system can be studied
straightforwardly by molecular-dynamics �MD� simulations,
in which the fluid particles are modeled in a similar way as
the monomers. Due to the large length- and time-scale gap
between polymer and solvent dynamics, however, in such an
approach almost all CPU time is spent on computing the
dynamics of the fluid particles which is in general of minor
interest. Nevertheless, such simulations have been performed
and provide valuable insight into polymer dynamics.3–6

An efficient treatment of the dynamics of complex fluids
by computer simulations calls for a coarse grained and sim-
plified description of the solvent dynamics. This has stimu-
lated the development of a number of mesoscale simulation
techniques. Prominent examples are lattice gas automata7

and lattice-Boltzmann methods,8–12 and particle based off-
lattice methods such as dissipative particle dynamics13–16 and
multiparticle-collision dynamics17–19 �MPCD� �also called
stochastic rotation dynamics20�.

The MPCD method has attracted a considerable atten-
tion over the last few years and has been applied to a number
of colloidal18,21,22 and polymeric systems23–28 as well as to
membranes.29 However, no detailed analysis has been per-
formed to which extent MPCD accounts for the hydrody-
namic interactions in dilute polymer solutions.

In this article, we study the dynamics of polymer chains
in dilute solution with and without intramolecular excluded-
volume interactions, where the solvent is modeled by
MPCD. To compare simulation results with theories—in par-
ticular, the Zimm approach30,31—and scaling predictions, we
study the dynamics of Gaussian as well as self-avoiding
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polymers. Our primary goal is to test the ability of a
MPCD-MD hybrid method to produce the correct hydrody-
namic behavior of polymers in solution.

The transport properties of a MPCD fluid can be tuned
by the mean free path of the solvent particles.32 Viscous
transport dominates over diffusive transport for sufficiently
small mean free paths, as is indicated by a large solvent
Schmidt number.28,32,33 Similarly, the dynamical properties
of the polymer depend on the mean free path. Our simula-
tions show that the intramolecular dynamics is much more
susceptible to changes in the mean free path than the center-
of-mass motion. The reason is that in the first case smaller
length-scale properties are probed than by the latter quantity,
where the whole molecule contributes. For sufficiently small
mean free paths, however, the scaling behavior of the diffu-
sion coefficient and of the correlation functions of the Rouse-
mode amplitudes are obtained in accordance with the predic-
tions of the Zimm model.

Currently attempts are underway to map the detailed ato-
mistic structure of a particular polymer onto a coarse-grained
bead-spring model.34–37 Typically various chemical groups
are mapped onto an effective monomer. Thus, such coarse
graining leads to large-size structures with a smaller number
of effective monomers. The study of the dynamics of such
polymers in dilute solution demands the adequate build up of
hydrodynamic interactions even for effectively short chains.
Moreover, in simulations of semidilute polymer solutions a
sufficiently large number of polymers is required which lim-
its the accessible length of individual polymers. We demon-
strate that the MPCD method provides hydrodynamic behav-
ior for such systems.

The paper is organized as follows. In Sec. II the simula-
tion method is outlined and the polymer models are de-
scribed. The transport properties of the MPCD fluid are de-
scribed in Sec. III. Results for the simulation of polymers
without and with excluded-volume interactions are presented

in Sec. IV. Section V summarizes our results.

© 2005 American Institute of Physics05-1

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2041527
http://dx.doi.org/10.1063/1.2041527


144905-2 Mussawisade et al. J. Chem. Phys. 123, 144905 �2005�
II. SIMULATION METHOD AND MODEL

The solvent is described as a system of N point particles
of equal masses m which are located at the positions ri�t� and
possess the velocities �i�t� �i=1, . . . ,N�. To maintain a con-
stant particle density, three-dimensional periodic boundary
conditions are applied. The MPCD algorithm consists of two
steps. In the streaming step, the particles move ballistically.
Hence, their positions change according to

ri�t + h� = ri�t� + h�i�t� �1�

in the time interval h. We will denote h as the collision time
in the following. In the collision step, the particles are sorted
into cubic cells of side length a. Particles within a collision
cell interact with each other through a rotation of the velocity
of every particle relative to the center-of-mass velocity �c.m.

of all the particles within that cell. Hence, the velocity of
particle i changes according to

�i�t + h� = �c.m.�t� + R�����i�t� − �c.m.�t�� , �2�

where R��� is the rotation matrix for the rotation by a fixed
angle � and �c.m.=� j

Nimj� j /� j
Nimj is the center-of-mass ve-

locity with Ni the number of particles in the collision box of
particle i. The orientation of the rotation axis is chosen ran-
domly for every collision cell and time step. Alternative
schemes are also possible.38,39 To insure Galilean invariance
of the simulation scheme, we apply a random shift for each
collision step.20 The dynamics of the MPCD algorithm con-
serves mass, energy, and momentum for each collision cell.
There is a H theorem for the algorithm and it yields the
correct hydrodynamic equations �Navier-Stokes equation� in
the continuum limit.38,40

A polymer chain is introduced into the system by adding
Nm point particles each of mass M which are connected lin-
early by bonds. We consider two different polymer models, a
Gaussian chain and a chain with excluded-volume �EV� in-
teractions. Correspondingly, the following potentials are ap-
plied:

�i� Gaussian chain: The monomers are connected by the
harmonic potential,

UG =
3kBT

2l2 �
i=1

Nm−1

�ri+1 − ri�2, �3�

with zero mean bond length. Here, l is the root-mean-
square bond length, T is the temperature, and kB is the
Boltzmann constant.

�ii� Excluded-volume chain: The monomers are connected
by the harmonic potential,

UEV =
�

2 �
i=1

Nm−1

��ri+1 − ri� − l�2, �4�

with mean bond length l. The force constant � is cho-
sen such that the fluctuations of the bond lengths are
on the order of a percent of the mean bond length
only. In addition, the monomers interact via the repul-

sive, truncated Lennard-Jones potential,
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The dynamics of the chain monomers is determined by
Newtons’ equations of motion between the collisions with
the solvent. These equations are integrated by the velocity
Verlet algorithm with the time step hp. The latter is typically
smaller than the collision time h. The monomer-solvent in-
teraction is taken into account similar to the solvent-solvent
interaction, i.e., the monomers are included in the collision
step �2� as suggested in Ref. 23.

We scale length and time according to x̂=x /a and t̂
= t�kBT /ma2, which corresponds to the choice kBT=1, m
=1, and a=1. The mean free path of a fluid particle h�kBT /m

is the given by �= ĥ. In addition, we set l=a, �=a, and
� /kBT=1.

III. TRANSPORT COEFFICIENTS

In a number of studies, the transport properties of the
MPCD fluid have been investigated.17,18,20,32,33,38,40–43 In par-
ticular, analytical expressions have been derived for the vis-
cosity �. The total viscosity is the sum of two contributions,
the kinetic viscosity �kin and the collisional viscosity
�coll��=�kin+�coll�, which explicitly read in three
dimensions,38,42

�coll =
m�

18ha
	1 −

1

�

�1 − cos �� ,

�6�

�kin =
kBTh�

a3 	 5�

�4 − 2 cos � − 2 cos 2���� − 1�
−

1

2

 .

� is the number of fluid particles per collision cell and is
related to the mass density � by �=m� /a3. In the derivation
of the kinetic contribution, the molecular-chaos assumption
is applied. Various numerical studies show that the viscosity
agrees very well with the analytical predictions,32,42,43 in par-
ticular for the range of parameters which we apply in our
polymer simulations. It is important to note that the fluid
viscosity can be controlled by the average number � of fluid
particles in a collision cell, since ��� for sufficiently large
�.

Considering a polymer embedded in the solution, we can
calculate approximate analytical expressions for the velocity
autocorrelation function, the mean-square displacement, and
the diffusion coefficient of its center of mass. Similar expres-
sion have been obtained for simple fluids in Refs. 32 and 44.
Exploiting the molecular-chaos assumption, i.e., the velocity
correlation functions among different monomers and be-
tween monomers and fluid particles are zero, and neglecting
correlations between monomers due to bonds, leads to the
polymer center-of-mass velocity autocorrelation function,

��c.m.�nh��c.m.�0�� =
3kBT

MNm
�1 − 	�n, �7�
where
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	 = 	��
k=1




P�k�
�m

kM + �m
, �8�

	� = 2
3 �1 − cos �� , �9�

with k the number of monomers in a collision cell. The num-
ber of monomers per cell varies from cell to cell and as a
function of time. Therefore, density fluctuations have to be
taken into account. The probability P�k� of a given monomer
to be found in a cell with a total of k−1 other monomers is
given by the Poisson distribution function P�k�=e��k−1 / �k
−1�!, where � is the average number of monomers in such a
cell. For M =�m, the average reads

	 = 	�

1

�2 �e−� + � − 1� . �10�

Hence, we find an exponentially decaying correlation func-
tion with the characteristic time �0=−h / ln�1−	�. The pres-
ence of bonds and hydrodynamic interactions will lead to
deviations from this simple decay.

With these approximations, the center-of-mass mean-
square displacement is found to be

��rc.m.�nh� − rc.m.�0��2�

=
6kBTh2

MNm
�	 1

	
−

1

2

n −

�1 − 	� − �1 − 	�n+1

	2 � . �11�

In the long-time limit, n→
, we obtain the diffusion coeffi-
cient,

Dc.m. =
kBTh

MNm
	 1

	
−

1

2

 . �12�

An estimate of the monomer density � is found from the
radius of gyration �RG� of a polymer. With �=Nm /V and V
=4
RG

3 /3, we find �=3Nm / �4
RG
3 �.

IV. POLYMERS IN DILUTE SOLUTION

To study the dynamics of linear polymers dissolved in a
MPCD fluid, we consider chains of various lengths. Most of
the results presented below are for polymers of lengths Nm

=20 and Nm=40, but in some cases we consider polymer
lengths up to Nm=160. The latter is comparable with the
polymer length used in the recent Brownian dynamics simu-
lations including hydrodynamic interactions by the Rotne-
Prager tensor.45 As our simulations show, certain quantities,
like the center-of-mass mean-square displacement �at a cer-
tain, finite system size� can be obtained with a moderate
expense of computational time even for rather long poly-
mers. The calculation of the scaling behavior of the Rouse-
mode amplitudes, however, requires a significant effort.
Thus, we restrict ourselves to the polymer lengths Nm�40
for most aspects. The average number of fluid particles in a
collision cell is set to �=10. Guided by our results on the
dynamics of a pointlike heavy particle in the MPCD
solvent,44 we choose M =�m. This value provides a suffi-
ciently strong coupling between monomers and fluid to build
up hydrodynamic interactions.32 The rotation angle is set to

�=150° and the mean free paths �=0.1 and �=2.0 are con-
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sidered. For �=0.1, the collisional viscosity dominates over
the kinetic viscosity and the total viscosity is � /�kBT /ma4

=10. Hence, the Schmidt number Sc=� / �D�� is much larger
than unity and the simulations are performed in the ’collec-
tive regime’,32,44 where hydrodynamic interactions are taken
into acount. On the other hand, for �=2 the kinetic contri-
bution to the total viscosity dominates over the collisional
viscosity and the Schmidt number is close to unity. Thus, we
expect only a partial buildup of hydrodynamic interactions.
The long-range nature of the hydrodynamic interaction re-
quires a particular adjustment of the system size in order to
extract scaling relations as a function of polymer length. As
has been outlined in Ref. 6, the ratio of the radius of gyration
and the systems size has to be constant. Hence, we increase
the system size linearly with the increasing radius of gyration
RG, where RG= l��Nm−1��Nm+1� /6Nm for Gaussian chains
and RG�Nm

� , with ��0.6, for chains with excluded-volume
interactions. For Nm=20 and no excluded volume interac-
tions, we chose a cubic simulation box of side length L
=18a. For chains of the same length interacting via
excluded-volume interactions, we used the side length L
=25a. Finally, the time step for the velocity Verlet algorithm

was set to ĥp=10−2 for Gaussian chains and ĥp=2�10−3 for
polymers with excluded-volume interactions.

A. Gaussian chains

Simulations of Gaussian chains, i.e., polymers with the
bond potential �3�, can be compared with analytical calcula-
tions based on the Zimm approach.30,31 We like to point out,
however, that we do not simulate the Zimm model. The
Zimm approach relies on the preaveraging approximation,
whereas our simulations take into accout the configurational
dependence of the hydrodynamic interactions—and therefore
thermal fluctuations. The scaling predictions of the Zimm
approach have been confirmed experimentally and by com-
puter simulations.31,46–50 Thus, the comparison can serve as a
test of the simulation method or, vice versa, the validity of
the approximations in the Zimm approach.

The equilibrium properties of a polymer are not affected
by hydrodynamic interactions. Consistent with that we find
excellent agreement between various measured equilibrium
quantities, e.g., the radius of gyration of Gaussian chains.

The dynamics of the Gaussian chain without hydrody-
namic interactions is described by the well-known Rouse
model.31,51 Such a dynamics can be realized in our algorithm
by considering the polymer only, without any fluid particles.
This is achieved, when in the collision step the �full� velocity
vector of every individual monomer is rotated around a ran-
dom axis. The factor 	 of the velocity autocorrelation func-
tion �7� is then exactly given by 	=	� �cf. Eq. �9��, since the
individual monomer velocities are independent of each other.
Simulations of a polymer without fluid particles yield excel-
lent agreement between the numerically determined velocity
autocorrelation function and the mean-square displacement
with the theoretical expressions �7� and �11� using 	=	�.
Naturally, the autocorrelation functions of the Rouse-mode
amplitudes display the predicted behavior too. An alternative

scheme for a Brownian-type solvent is used in Ref. 23,
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where the fluid particles are taken into account and the ve-
locities of the fluid particles are exchanged randomly after
every collision step to suppress correlations.

The Zimm model rests upon the Langevin equation for
over-damped motion of the monomers, i.e., it applies for
times larger than the Brownian time scale �B�M /�, where �
is the Stokes friction coefficient.52 On such time scales, the
velocity correlation functions have decayed to zero and the
monomer momenta are in equilibrium with the solvent.
Moreover, hydrodynamic interactions between the various
parts of the polymer are assumed to propagate instanta-
neously. This is not the case in our simulations. First of all,
the monomer inertia term is taken into account, which im-
plies nonzero velocity autocorrelation functions. Secondly,
the hydrodynamic interactions build up gradually. To gain
insight into the influence of these aspects on polymer dynam-
ics, Fig. 1�a� displays the center-of-mass velocity autocorre-
lation function for Nm=20 and Nm=40, and for the mean free
paths �=0.1 and �=2. The lines indicate the exponential
decay of the correlation function �7� with 	 of Eq. �10�. The
monomer density �=3Nm�6/Nm�3/2 / �4
a3� has been used,
as explained above in Sec. III. The analytical approximation
captures the decay of the correlation function for the first
collision step �where the molecular-chaos approximation for
the solvent is exact� very well, considering the fact that only
a rough estimate of the monomer density via the radius of

FIG. 1. �Color online.� Center-of-mass velocity autocorrelation functions for
Gaussian polymers of length Nm=20, with the mean free paths �=0.1 ���
and �=2 ��� as well as for Nm=40 and �=0.1 ���. �a� The solid lines show
the exponential decay predicted by Eq. �7�. �b� Log-log representation of the
correlation functions for Nm=20, Nm=40, and �=0.1 as a function of Dt.
The solid line is proportional to �Dt�−3/2.
gyration has been used. For the large mean free path �=2,
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the velocity autocorrelation function is in fact described very
well by the exponential decay �7� for about a decade. The
nonexponential decay of the correlation functions for �
=0.1 leads us to the conclusion that in this case hydrody-
namic interactions are important in the simulations. Figure
1�b� shows that the correlation function decays as
��c.m.�t��c.m.�0��� t−3/2 on larger time scales. This algebraic
decay has been predicted before and is associated with a
coupling between the motion of the polymer and the hydro-
dynamic modes of the fluid.53–55 By scaling the time with the
diffusion coefficient D, we find that the correlation function
is a universal function of Dt. This is in agreement with the
results of dissipative particle dynamics simulations of dilute
polymer systems.56

The center-of-mass mean-square displacement, which is
shown in Fig. 2, exhibits various time regimes. The initial
ballistic regime �t�h� is followed by a transient regime,
where the inertia effects and the buildup of the hydrody-
namic interactions are important. In this time window, the
velocity autocorrelation function decays and displays the
long-time tail. For longer times, the center-of-mass mean-
square displacement increases linearly with time. On such
time scales, the velocity autocorrelation function has essen-
tially decayed to zero and even the long-time tail is no longer
relevant for the mean-square displacement. Figure 2 displays
the center-of-mass mean-square displacements for various
polymer lengths and collision times. The lines are calculated
using Eq. �11�. The hydrodynamic interactions are only
weakly developed for �=2, since the difference between the
simulation data and the analytical approximation—which ne-
glects hydrodynamic interactions—is very small. On the
other hand, for the small mean free path �=0.1, the hydro-
dynamic interactions yield a significant increase of the mean-
square displacement and hence the diffusion coefficient. As
discussed in detail in Refs. 32 and 44, the hydrodynamic
interactions are fully developed for small mean free paths
only, which is reflected in the deviations from the theoretical
expression for the two mean free paths of Fig. 2. In the
following, we will always use �=0.1, if not otherwise state.

FIG. 2. �Color online.� Center-of-mass mean-square displacements for
Gaussian polymers of lengths Nm=20 and Nm=40 �symbols�. The data are
for Nm=20 and �=2 �top�, Nm=20 and �=0.1 �middle�, and for Nm=40 and
�=0.1 �bottom�. The lines are calculated according to Eq. �11�.
A comparison with the Zimm model can only be under-
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taken in the regime where the mean-square displacement dis-
plays a linear time dependence. Figure 2 shows that the lin-
ear regime appears for t /�ma2 /kBT�20 for our fluid
parameters. From this linear regime, we obtain the diffusion
coefficient for the given size of the simulation box.

The short-time center-of-mass diffusion coefficient in the
over damped regime described by the Smoluchowski
equation31 of a polymer is given by the Kirkwood
formula,1,2,45

D�K� =
D0

Nm
+

kBT

6
�

1

RH
, �13�

where the hydrodynamic radius RH is defined as

1

RH
=

1

Nm
2 ��

i=1

Nm

�
j=1

Nm

�
1

�ri − r j�
� , �14�

and the prime indicates that the term with j= i has to be left
out in the summation. For a Gaussian chain, the hydrody-
namic radius is found to be57

RH =
3l

8
�


6
Nm

1/2�1 −
3

4
��1/2�Nm

−1/2 + O�Nm
−3/2�� , �15�

where ��1/2�=−1.460. . .. Thus, RH�RG to leading order in
Nm, but corrections to scaling are different. In Eq. �13�, D0 is
the diffusion coefficient of a single monomer in the same
solvent. Equation �13� applies for a single chain in an infi-
nitely large system only. In a system with periodic boundary
conditions, interactions with periodic images appear. We are
primarily interested in the scaling behavior of the diffusion
coefficient with respect to the hydrodynamic radius and not
in its absolute values for a finite system. Therefore, we dis-
cuss the diffusion coefficient as a function of the hydrody-
namic radius of an infinite system, assuming that D
−D0 /Nm�g�RG /L� /RH as discussed in Ref. 6, where D is
extracted from the center-of-mass mean-square displace-
ment.

As is well known, the Kirkwood formula �13� is not
equal to D in general. Several effects in a system with fluc-
tuating hydrodynamics lead to a smaller diffusion coefficient.
In Refs. 31 and 58 it has been shown that fluctuating hydro-
dynamic interactions lead to a diffusion coefficient which is
a few percent smaller than that with preaveraged hydrody-
namic interactions. Moreover, intramolecular dynamic corre-
lations cause a difference between the short- and long-time
diffusion coefficients, as has been worked out in detail in
Ref. 45. All these considerations are based on the Smolu-
chowski equation31 and the inclusion of hydrodynamic inter-
actions by a tensor. Since our simulations include inertia ef-
fects and are not based on a hydrodynamic tensor, additional
effects may modify the diffusion coefficient.

The hydrodynamic part DH=D−D0 /Nm of the diffusion
coefficient is presented in Fig. 3 as a function of the hydro-
dynamic radius �14�. In the limit Nm�1, the diffusion coef-
ficient D is dominated by the hydrodynamic contribution DH,
since DH�Nm

−1/2. For shorter chains, D0 /Nm cannot be ne-
glected, and therefore has to be subtracted in order to extract
the scaling behavior of DH. The hydrodynamic part of the

diffusion coefficient DH exhibits the dependence predicted
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by the Kirkwood formula and the Zimm theory. Considering
finite-system-size corrections to D, we find the dependence
D=D
−const/L within the accuracy of the simulations, in
agreement with the previous studies.23,50,59 Increasing the
box lengths for polymers of lengths Nm=10, 20, and 40 and
extrapolating to an infinite system, we find D0 /�kBTa2 /m
�1.7�10−2, which is in agreement with the diffusion coef-
ficient of a monomer in the same solvent. The values D
 are
about 30% larger than the finite-system-size values presented
in Fig. 3.

The Kirkwood formula neglects hydrodynamic fluctua-
tions and is thus identical with the preaveraging result of the
Zimm approach. Considering the hydrodynamic part only,
the Zimm model yields the diffusion coefficient,

DZ = 0.192
kBT

l��Nm

. �16�

For polymers of length Nm=40 we find DZ /�kBTa2 /m
=0.003. This value agrees with the numerical value for an
infinite system: DH /�kBTa2 /m=0.0027 within 10%. Thus,
our simulations yield a diffusion coefficient smaller than D�K�

in agreement with previous studies.31,45,58 Note that the ex-
perimental values are also smaller by about 15% than those
predicted by the Zimm approach.31,60,61

The hydrodynamic interactions also affect the intramo-
lecular dynamics. The Zimm approach predicts for the
monomer mean-square displacement in the center-of-mass
reference frame the dependence,30,31,62

���ri�t� − rc.m.�t�� − �ri�0� − rc.m.�0���2� � t2/3, �17�

for time scales larger than the transient time determined by
the long-time tail and smaller than the Zimm time �Z=�1

=��Nml�3/2 /�3
kBT, where �1 is the longest intramolecular
relaxation time. This dependence is distinctively different
from the behavior of the Rouse model �no hydrodynamic
interactions� which predicts a t1/2 dependence.

Figure 4 displays the monomer mean-square displace-
ment averaged over all monomers. For t̂�20, where the
mean-square displacement of the center of mass is linear, the
monomer dynamics in the center-of-mass reference frame
exhibits a behavior close to the predicted power law. Since

FIG. 3. Dependence of the hydrodynamic part of the diffusion coefficient,
DH=D−D0 /Nm, on the hydrodynamic radius for Gaussian chains of lengths
Nm=5, 10, 20, 40, 80, and 160. The mean free path is �=0.1.
our polymers are short, we observe a crossover behavior
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rather than a clear power law. However, the simulation re-
sults are consistent with the expected behavior. The total
mean-square displacement ��ri�t�−ri�0��2� of a monomer dis-
plays a somewhat larger slope than that in the center-of-mass
reference frame. Only for much longer chains will the total
monomer mean-square displacement be close to that in the
center-of-mass reference frame, because then the center-of-
mass diffusion coefficient will be very small for t��Z.

To further characterize the internal dynamics of the mo-
lecular chain, we perform a mode analysis in terms of the
eigenfunctions of the discrete Rouse model.31,51 The mode
amplitudes are calculated according to

�p =� 2

Nm
�
i=1

Nm

ri cos� p


Nm
	i −

1

2

� . �18�

Due to hydrodynamic interactions, the Rouse modes are no
longer eigenfunctions of the chain molecule. However,
within the Zimm theory, they are reasonable approximations
and the autocorrelation functions of the mode amplitudes
decay exponentially, i.e., ��p�t��p�0��= ��p

2�exp�−t /�p�. For
the Rouse model, the relaxation times �p depend on chain
length and mode number according to �p�1/sin2�p
 /Nm�,
whereas for the Zimm model the dependence

�p � �p/Nm�1/2/sin2�p
/Nm� �19�

is obtained. The extra contribution �p /Nm follows from the
eigenfunction representation of the preaveraged hydrody-
namic tensor, under the assumption that its off-diagonal ele-
ments do not significantly contribute to the relaxation behav-
ior.

In Fig. 5 the autocorrelation functions for the mode am-
plitudes are shown for the mean free path �=0.1. Within the
accuracy of our simulations, the correlation functions decay
exponentially and exhibit the scaling behavior according to
the Zimm model. Hence, for the small mean free path, hy-
drodynamic interactions are taken into account correctly.
This is no longer the case for the large mean free path �
=2. Here we observe a scaling behavior in between the pre-
dictions of the Rouse and Zimm model. This implies that

FIG. 4. �Color online.� Monomer mean-square displacements for Gaussian
polymers of lengths Nm=20 �dashed� and Nm=40 �solid� averaged over all
monomers. The top curves correspond to the total mean-square displacement
and the bottom ones to the mean-square displacement in the center-of-mass
reference frame.
hydrodynamic interactions are present, but are not fully de-
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veloped or are small compared to the local friction of the
monomers. As mentioned before, we obtain the pure Rouse
behavior for a system without solvent by simply rotating the
velocities of the individual monomers.

In Ref. 59, a correction term to the standard Zimm result
has been derived. Neither is such a correction needed to
achieve agreement of our data with the predictions of the
Zimm model, nor do our data support the existence of such a
term. Hence, we conclude that other approximations in the
derivation of the Zimm results compensate for these correc-
tions.

The dependence of the relaxation times on the radius of
gyration is displayed in Fig. 6 for �=0.1. The scaling behav-
ior �1�Rg

3 agrees very well with the predictions of the Zimm
theory. We even find almost quantitative agreement; the re-
laxation time of the p=1 mode of our simulations is approxi-
mately 30% larger than the Zimm value.31

As discussed above, sufficiently long relaxation times
compared to the decay of the velocity autocorrelation func-
tion are required to observe the dynamics in the Stokes re-
gime. The relaxation times �1 in Fig. 6 are sufficiently large
to fulfill that requirement. Even the relaxation times for
higher modes �at least for p�4� are larger than the time
required to reach the regime where the mean-square dis-

FIG. 5. �Color online.� Correlation functions of the Rouse-mode amplitudes
for the modes p=1–4 of Gaussian polymers. The chain lengths are Nm

=20 �right� and Nm=40 �left�.

FIG. 6. Dependence of the longest relaxation time �1 on the radius of gy-

ration for Gaussian chains of the lengths given in Fig. 3.
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placement of the center of mass of a polymer becomes linear.
Note that the relaxation times are proportional to the solvent
viscosity and thus can be controlled by the number of fluid
particles per collision cell �.

B. Excluded-volume interactions

The scaling behavior of equilibrium properties of single
polymers with excluded-volume interactions has been stud-
ied extensively.31,63–66 It has been found that even very short
chains �Nm�10� already follow the scaling behavior ex-
pected for much longer chains. In particular, the radius of
gyration increases like RG�Nm

� with the number of mono-
mers, and the static structure factor S�q� exhibits a scaling
regime for 2
 /RG�q�2
 /�, with a q−1/� decay as a func-
tion of the scattering vector q and the exponent ��0.6.

The chain static structure factors for polymers of lengths
Nm=20 and Nm=40, which are shown in Fig. 7, exhibit a
regime which is well described by the decay q−1/� with �
�0.62. The mean-square end-to-end distances and the radii
of gyration are consistent with this exponent. Thus, chains of
these lengths are reasonably well in the scaling regime for
the static properties, in agreement with the previous
observations.5,6

Considering the dynamics of a polymer chain with
excluded-volume interactions, we expect that the diffusion
coefficient DH is proportional to 1/RH,31 similar to the de-
pendence obtained for a Gaussian chain. Thus, the quantity
���rc.m.�t�−rc.m.�0��2�−6D0t /Nm�RH should be independent of
the molecular weight of the polymer, at least on large time
scales. Figure 8 displays the results for the chain lengths
Nm=20 and Nm=40. The mean-square displacement is linear
at times larger than t̂�100 and the two curves fall on top of
each other. Hence, the relation for the diffusion coefficient
DH�1/RH also applies for polymers with excluded-volume
interactions at the expected time scale.

The mean-square displacement of an individual mono-
mer, averaged over all monomers, is shown in Fig. 9. The
simulation data for the two chains lengths are very similar
for the total mean-square displacement, but there is essen-

2/3

FIG. 7. �Color online.� Single chain static structure factors of polymers with
excluded volume interactions of lengths Nm=20 �bottom� and Nm=40 �top�.
The slope of the straight line is approximately −1.6, which yields a scaling
exponent ��0.62 for the relation S�q��q−1/�.
tially no scaling regime �t � for the monomer mean-square
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displacement in the center-of-mass reference frame. This is
of course a finite-size effect due to the shortness of the poly-
mers.

To achieve a better theoretical understanding of the
simulation results, we map the discrete polymer chain onto a
continuous semiflexible polymer model.67 We resort to such
a description because no analytical result has been presented
so far for the dynamics of polymers with excluded-volume
interactions. The excluded-volume interactions cause a
swelling of the polymer compared to the structure of a phan-
tom chain �freely jointed chain�. We account for this increase
of the equilibrium chain dimension by the persistence length
of the semiflexible chain model. There are various ways to
determine the persistence length of the semiflexible chain.
One possibility is to consider the correlation of two succes-
sive bond vectors Ri and to exploit the relation �Ri+1Ri� / l2

=exp�−l / lp�, where lp is the persistence length. A simple cal-
culation, which takes into account the hard-sphere interac-
tions between nearest and next-nearest neighbors only, yields
�Ri+1Ri� / l2= �cos ��, where � is the angle between the two
adjacent bond vectors, which gives lp=0.72l. However, this

FIG. 8. �Color online.� Center-of-mass mean-square displacements ��rc.m.

=rc.m.�t�−rc.m.�0�� as a function of time for polymers with excluded volume
interactions of lengths Nm=20 �top� and Nm=40 �bottom�. The straight line
has a slope of 1.

FIG. 9. �Color online.� Monomer mean-square displacements as a function
of time for polymers with excluded volume interactions of lengths Nm=20
and Nm=40. The top curves represent the mean-square displacements aver-
aged over all monomers, the bottom ones the mean-square displacements in

the center-of-mass reference frame.
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value is too small to account for the swelling of the whole
molecule, which is due to excluded-volume interactions
among the distant monomers along the chain. We mimic this
additional excluded-volume effect by adjusting the persis-
tence length such that the radius of gyration of the semiflex-
ible chain agrees with that of the simulated polymer. This
procedure yields the ratios Lp / lp�13, for Nm=20, and
Lp / lp�24, for Nm=40. Here, Lp= �Nm−1�l is the length of
the polymer, and the persistence length corresponds to about
1.6 monomer units. Since the ratios Lp / lp are not very large,
our simulated polymers should exhibit semiflexible rather
than flexible chain behavior.62,68 It should be noticed that the
choice of a larger persistence length �adjusted to reproduce
the radius of gyration� implies that the semiflexible chain is
too stiff on the monomer scale; therefore, we cannot expect
the model to yield quantitative agreement with the simula-
tion data on short length and time scales.

The dotted lines in Fig. 9 are results of the semiflexible
chain model �for details of the model see Refs. 62 and 68–
70�. The theoretical curves describe the simulation data
rather well for times t�100, i.e., on time scales where the
center-of-mass mean-square displacement is linear, which is
the time regime where the theoretical model applies. The
monomer mean-square displacement in the center-of-mass
reference frame does not exhibit any clear scaling regime.
The data for the total monomer mean-square displacement
seem to show a power-law dependence with time as t0.75–0.78.
Since no clear power-law regime is seen in the center-of-
mass reference frame, we believe that this is a transient be-
havior rather than a true scaling behavior which reflects the
intramolecular dynamics. In Ref. 59, a exponent close to the
Zimm value 2/3 has been deduced from simulations of a
self-avoiding polymer in a lattice-Boltzmann solvent. Due to
the same arguments given above, we believe that they also
observe a transient behavior. In conclusion, the considered
chains are too short to exhibit the scaling behavior of the
monomer mean-square displacement predicted by the Zimm
model.

The analysis of the intramolecular dynamics in terms of
the Rouse modes yields nonexponentially decaying autocor-
relations functions of the mode amplitudes. At short times
we find a fast decay which turns into a slower exponential
decay. Except for short times, the correlation functions
��p�t��p�0�� / ��p�0�2� are well fitted by the functions
Ap exp�−t /�p�, with A1=0.98, A2=0.973, A3=0.962, and A4

=0.962 for Nm=20 and A1=0.97, A2=0.97, A3=0.954, A4

=0.942, and A5=0.93 for Nm=40. Figure 10 presents the
autocorrelation functions calculated from the simulation
data. To emphasize the scaling properties of the correlation
functions, they are divided by the respective Ap. The time
axis is scaled with the mode number according to tp�, where
�=1.93 for Nm=20 and �=1.85 for Nm=40. Within the ac-
curacy of our calculations, the correlation functions exhibit a
universal behavior. The Zimm theory predicts the depen-
dence �p� p−3� of the relaxation times on the mode number
for polymers with excluded-volume interactions.31 With �
=0.62, the value following from the analysis of the static
quantities, our exponent � for the polymer of length Nm
=40 agrees excellently with the theoretical prediction. The
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exponent for the polymers with Nm=20 is slightly larger.
The comparison of the relaxation times extracted from

the simulation data with those of the semiflexible chain
model for various modes yields excellent agreement �up to
p=5� for both the longer and shorter polymer chains. Calcu-
lations exploiting the same polymer model without hydrody-
namic interactions yield the exponent �=2, corresponding to
the Rouse model.

The Zimm model yields the dependence �1�Nm
3� of the

longest relaxation time on the chain length.31 We cannot per-
form a detailed scaling analysis in this case with our two
chain lengths; however, our relaxations times are consistent
with this prediction. A direct fit to a single power law gives
the dependence �1�Nm

1.7, i.e., a slightly smaller exponent.
Thus, we find good agreement between the theoretically

predicted scaling behavior of the Rouse-mode correlation
functions with the simulation results for the modes with long
wavelengths. On the other hand, as discussed in the context
of the monomer mean-square displacement, we find that the
simulated chains are too short to follow the predicted scaling
behavior of the intramolecular dynamics. Since the scaling
behavior of the monomer mean-square displacement is ob-
tained for t��1, where �1 is the longest relaxation time, the
agreement of the longest relaxation times with the predic-
tions of the Zimm model does not allow any conclusion on
the scaling properties of the monomer mean-square displace-
ment. This implies that the short-wavelength modes, which
describe the dynamics on the length scale of a few mono-
mers, are not in the overdamped regime required for the
Zimm model to apply.

We finally discuss the scaling behavior of the dynamic
structure factor, which is defined as

S�q,t� =
1

Nm
�
i=1

Nm

�
j=1

Nm

�exp�iq�ri�t� − r j�0���� . �20�

Independent of the solvent conditions �� or good solvent�,
31

FIG. 10. �Color online.� Correlation functions of the Rouse-mode ampli-
tudes for various modes as a function of the scaled time tp� for polymers
with excluded volume interactions. The chain lengths are Nm=20 �left� and
Nm=40 �right�. The calculated correlations where fitted by Ap exp�−t /�p�
and have been divided by Ap. The scaling exponents of the mode numbers
are �=1.93 �Nm=20� and �=1.85 �Nm=40�, respectively.
the Zimm model predicts the scaling relation,
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S�q,t� = S�q,0�f�q�t� , �21�

with �=3, for qRG�1 where the internal motion of the
chain is detected. Analytical calculations for Gaussian poly-
mers in the preaveraging approximation yield ln f�x��x�

with �=2/3 for q3tkBT / �6
���1.31,62,69 Thus,
log�S�q , t� /S�q ,0�� should follow a straight line in a log-log
representation.59

The monomer mean-square displacements in the labora-
tory and in the center-of-mass reference frame are clearly
different in the time window 50� t /�ma2 /kBT�200 �cf.
Fig. 9�, i.e., there is no clear separation of the monomer
dynamics and the center-of-mass dynamics. Since the mono-
mer dynamics exhibits a t3/4 power-law dependence in the
laboratory frame, we expect the dynamic structure factor to
display a scaling behavior similar to that of a semiflexible
polymer, where S�q , t�=S�q ,0�g�q8/3t� for qRG�1, rather
than that of a flexible polymer. The numerical calculation
indeed confirms our assumption and we consistently obtain
agreement with this prediction.

To extract the scaling relation for the intramolecular dy-
namics only, which corresponds to the prediction �21�, we
resort to the following considerations. As is well known, the
dynamic structure factor for a Gaussian distribution of the
differences ri�t�−r j�0� and a linear equation of motion is
given by31,69

S�q,t� = S�q,0�exp�− Dq2t�

�
1

Nm
�
i=1

Nm

�
j=1

Nm

exp�− q2��ri��t� − r j��0��2�/6� , �22�

where Dq2t accounts for the center-of-mass dynamics and ri�
denotes the monomer position in the center-of-mass refer-
ence frame. Strictly speaking, the scaling relation �21� ap-
plies for Dq2t�1, because then the intramolecular dynamics
dominates. As mentioned above, for our systems there is no
clear separation of the center-of-mass dynamics and the
monomer diffusion. To get the dynamics in the center-of-
mass reference frame only, we plot S�q , t� / �S�q ,0�
�exp�−Dq2t��, which should follow the scaling prediction
�21�.

The simulation results for the polymer of length Nm

=40 are shown in Fig. 11. Only q values in the range of
0.7�qa�2.0 are considered, corresponding to the scaling
regime of the static structure factor �cf. Fig. 7�.59 With re-
spect to the time scale, the interval 50� t /�ma2 /kBT�200 is
considered. The numerical results agree very well with the
scaling prediction. This is not surprising, since the monomer
mean-square displacement in the center-of-mass reference
frame exhibits approximately a t2/3 dependence in the con-
sidered time interval �cf. Fig. 9�. Thus, our MPCD-MD hy-
brid simulations are very well suited to study the dynamics
of even short polymers in dilute solution.

Ahlrichs and Dünweg reported deviations from the scal-
ing relation �21� in Ref. 59; they achieve the best scaling for
the values �=2.8 and �=0.71 in the scaling variable �q�t��.
Presumably, the analysis of their results including the diffu-
sion coefficient would yield a scaling of the dynamic struc-

ture factor comparable to ours. Considering the other results,
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we conclude that our MPCD hybrid simulations yield com-
parable results to their lattice Boltzmann-MD hybrid simula-
tions.

Our results for Nm=40 agree with the results presented
by Pierleoni and Ryckaert.5 However, we do not observe
Zimm scaling for Nm=20. This is a consequence of the fact
that the slope of the monomer mean-square displacement is
smaller than 2/3. Naturally, the dynamic structure factor
scales, when we use a smaller slope which is consistent with
that of the mean-square displacement. In contrast, Pierleoni
and Ryckaert obtain consistency with the scaling relation q3t
even for short polymers of length Nm=9 and by using
S�q , t� /S�q ,0�. This seems to be surprising in the light of our
results. However, in Ref. 5 a larger bond length and a higher
temperature was used in simulations with explicit solvent. To
which extend these differences account for the observations
needs further investigation.

Our simulations of polymers confirm the previous
conclusions31,59,71 that the observation of the scaling behav-
ior predicted by the Zimm model is hampered by short chain
lengths. Although the relaxation times for the first few Rouse
modes exhibit already the expected scaling behavior, other
quantities like the monomer mean-square displacement and
the dynamic structure factor display strong finite-size effects.
In contrast to the static quantities, e.g., radius of gyration or
static structure factor, which exhibit scaling behavior already
for rather short polymers, dynamical quantities display scal-
ing relations for much longer polymers only. Using the semi-
flexible chain model, we predict a Zimm-type regime in the
monomer mean-square displacement with respect to the cen-
ter of mass for polymers which are approximately ten times
longer, i.e., for Nm�400. This is consistent with the ob-
served Zimm-type scaling behavior for polymers with Nm

=1000 in a semidilute solution at short times in Ref. 72.

V. SUMMARY AND CONCLUSIONS

We have presented a study of the dynamics of short
polymer chains dissolved in a mesoscopic solvent with and
without intramolecular excluded-volume interactions. The
solvent dynamics is modeled by multiparticle-collision dy-

FIG. 11. �Color online.� Normalized dynamic structure factor
S�q , t� / �S�q ,0�exp�−Dq2t�� of polymers with excluded volume interactions
for Nm=40 and various q values in the range of 0.7�qa�2 as a function of
q2t2/3.
namics. For the interactions between the solvent and a poly-
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mer molecule, a monomer is considered as a point particle
and taken into account in the collision step of the MPCD
algorithm similar to a fluid particle.

For polymers without excluded-volume interactions, we
find excellent agreement of the simulation results with pre-
dictions of the Zimm model for various dynamical quantities.
In particular, the center-of-mass diffusion coefficient exhibits
the dependence D−D0 /Nm�1/RH on the hydrodynamic ra-
dius. Moreover, the correlation functions of the Rouse-mode
amplitudes with long wavelengths decay exponentially and
the relaxation times scale according to the predictions of the
Zimm model. Similarly, the longest relaxation times display
the predicted behavior �1�RG

3 . Considering the center-of-
mass velocity autocorrelation function, we find an algebraic
long-time tail which seems to be a universal function of Dt.

When intramolecular excluded-volume interactions are
taken into account, the center-of-mass diffusion coefficient
also exhibits the behavior predicted by the Zimm approach—
or, equivalently, obeys the Kirkwood formula—with respect
to the chain length dependence. In addition the correlation
functions of the Rouse-mode amplitudes show the mode-
number dependence of this model for long wavelength. Con-
sidering other quantities, like the monomer mean-square dis-
placement and the dynamic structure factor, we do not find
scaling regimes with respect to chain length. The chains with
Nm=20 and Nm=40 monomers are too short to exhibit the
scaling regimes predicted by Zimm theory. The comparison
with a semiflexible chain model indicates that considerably
longer chains are required to observe the latter behavior.
Subtracting the center-of-mass motion, however, we find a
consistent scaling behavior of the dynamic structure factor
with the monomer mean-square displacement in the center-
of-mass reference frame. For Nm=40, we even obtain agree-
ment with the prediction of scaling theory.

Our simulations show that the MPCD-MD hybrid algo-
rithm for polymers, both with and without excluded-volume
interactions, adequately takes into account hydrodynamic in-
teractions in the regime of large Schmidt numbers. In par-
ticular, the center-of-mass dynamics can be studied with
short chains already and exhibits the universal behavior valid
also for long polymers. Treating the monomers as pointlike
particles in the interactions with the solvent has no influence
on the hydrodynamic interactions. This simplification allows
us to efficiently treat the solute-solvent interaction of poly-
meric systems. The algorithm has the advantage that it can
easily be applied to more complex molecules or systems with
many polymer chains.

In conclusion, the MPCD algorithm is a powerful
method to simulate the dynamics of complex fluids.
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