000046693 001__ 46693
000046693 005__ 20180210141147.0
000046693 0247_ $$2DOI$$a10.1007/s10008-004-0513-1
000046693 0247_ $$2WOS$$aWOS:000224836000002
000046693 037__ $$aPreJuSER-46693
000046693 041__ $$aeng
000046693 082__ $$a540
000046693 084__ $$2WoS$$aElectrochemistry
000046693 1001_ $$0P:(DE-HGF)0$$aPlieth, W.$$b0
000046693 245__ $$aBond Energies in Alloys Determined from Underpotential Deposition Potentials
000046693 260__ $$aBerlin$$bSpringer$$c2004
000046693 300__ $$a941 - 946
000046693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046693 3367_ $$2DataCite$$aOutput Types/Journal article
000046693 3367_ $$00$$2EndNote$$aJournal Article
000046693 3367_ $$2BibTeX$$aARTICLE
000046693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046693 3367_ $$2DRIVER$$aarticle
000046693 440_0 $$012701$$aJournal of Solid State Electrochemistry$$v8$$x1432-8488$$y12
000046693 500__ $$aRecord converted from VDB: 12.11.2012
000046693 520__ $$aA procedure is presented to determine bond energies between the metal (Me) and substrate (S) components of binary alloys from characteristic underpotential deposition (UPD) potentials. The bond energy between Me and S atoms is one of the factors governing the deposition kinetics and structure of Me-S alloy deposits. The proposed procedure is based on the determination of the UPD potential for formation of a condensed two-dimensional (2D) phase of the less noble metal Me (the UPD metal) on the more noble metal S (the substrate). Making reasonable approximations, the sublimation enthalpy of the condensed 2D Me phase is obtained from the corresponding formation underpotential. From this sublimation enthalpy the bond energy of an atom of the UPD metal in a kink site position of the 2D Me phase is calculated. This value is used to calculate the bond energy (phi(Me-S)) between an Me atom and an S atom. The method is demonstrated using experimental data obtained in selected electrochemical UPD systems.
000046693 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000046693 588__ $$aDataset connected to Web of Science
000046693 650_7 $$2WoSType$$aJ
000046693 65320 $$2Author$$aalloys
000046693 65320 $$2Author$$aelectrochemical deposition
000046693 65320 $$2Author$$aintermetallic compounds
000046693 65320 $$2Author$$asublimation enthalpy
000046693 65320 $$2Author$$aunderpotential deposition
000046693 7001_ $$0P:(DE-HGF)0$$aLorenz, W. J.$$b1
000046693 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b2$$uFZJ
000046693 773__ $$0PERI:(DE-600)1478940-1$$a10.1007/s10008-004-0513-1$$gVol. 8, p. 941 - 946$$p941 - 946$$q8<941 - 946$$tJournal of solid state electrochemistry$$v8$$x1432-8488$$y2004
000046693 8567_ $$uhttp://dx.doi.org/10.1007/s10008-004-0513-1
000046693 909CO $$ooai:juser.fz-juelich.de:46693$$pVDB
000046693 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000046693 9141_ $$aNachtrag$$y2004
000046693 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046693 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000046693 970__ $$aVDB:(DE-Juel1)73877
000046693 980__ $$aVDB
000046693 980__ $$aConvertedRecord
000046693 980__ $$ajournal
000046693 980__ $$aI:(DE-Juel1)PGI-3-20110106
000046693 980__ $$aUNRESTRICTED
000046693 981__ $$aI:(DE-Juel1)PGI-3-20110106