000046694 001__ 46694
000046694 005__ 20180210125409.0
000046694 0247_ $$2WOS$$aWOS:000226205000020
000046694 037__ $$aPreJuSER-46694
000046694 041__ $$aeng
000046694 082__ $$a540
000046694 084__ $$2WoS$$aChemistry, Multidisciplinary
000046694 1001_ $$0P:(DE-HGF)0$$aGarcia, S. G.$$b0
000046694 245__ $$aIn Situ STM Study of Electrocrystallization of Ag on Ag(111)
000046694 260__ $$aSão Paulo$$bSBQ$$c2004
000046694 300__ $$a917
000046694 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046694 3367_ $$2DataCite$$aOutput Types/Journal article
000046694 3367_ $$00$$2EndNote$$aJournal Article
000046694 3367_ $$2BibTeX$$aARTICLE
000046694 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046694 3367_ $$2DRIVER$$aarticle
000046694 440_0 $$014242$$aJournal of the Brazilian Chemical Society$$v15$$x0103-5053
000046694 500__ $$aRecord converted from VDB: 12.11.2012
000046694 520__ $$aThe electrocrystallization process was studied in the system Ag(111)1Ag(+). SO4= by in situ scanning tunneling microscopy (STM). The results show that Ag deposition occur preferentially at step edges following a layer-by-layer growth mechanism, but polarization and imaging conditions Greatly affect the local kinetics of this process. At STM-tip potentials more positive than the Ag/Ag- equilibrium potential. a local dissolution of the substrate underneath the tip is observed even at low negative substrate overpotentials, at which the overall substrate current density is cathodic. An in sire STM imaging of Ag deposition was possible at sufficiently high negative substrate overpotentials. An estimation of the local deposition current density, however. indicates that the deposition rate underneath the STM-tip is reduced. These results are explained by the presence of an electric field between the STM-tip and the substrate, which affects the potential distribution directly underneath the tip. producing a large shielding of the diffusive flux of Ag+ ions.
000046694 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000046694 588__ $$aDataset connected to Web of Science
000046694 650_7 $$2WoSType$$aJ
000046694 65320 $$2Author$$aScanning Tunneling Microscopy
000046694 65320 $$2Author$$aSTM-tip shielding effect
000046694 65320 $$2Author$$asilver deposition
000046694 65320 $$2Author$$atip-induced dissolution
000046694 7001_ $$0P:(DE-HGF)0$$aMayer, C. E.$$b1
000046694 7001_ $$0P:(DE-HGF)0$$aSalinas, D. R.$$b2
000046694 7001_ $$0P:(DE-Juel1)VDB13645$$aStaikov, G.$$b3$$uFZJ
000046694 773__ $$0PERI:(DE-600)2028738-0$$gVol. 15, p. 917$$p917$$q15<917$$tJournal of the Brazilian Chemical Society$$v15$$x0103-5053$$y2004
000046694 909CO $$ooai:juser.fz-juelich.de:46694$$pVDB
000046694 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000046694 9141_ $$aNachtrag$$y2004
000046694 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046694 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000046694 970__ $$aVDB:(DE-Juel1)73878
000046694 980__ $$aVDB
000046694 980__ $$aConvertedRecord
000046694 980__ $$ajournal
000046694 980__ $$aI:(DE-Juel1)PGI-3-20110106
000046694 980__ $$aUNRESTRICTED
000046694 981__ $$aI:(DE-Juel1)PGI-3-20110106