001     46698
005     20180210143653.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2004.10.056
024 7 _ |2 WOS
|a WOS:000233788600017
037 _ _ |a PreJuSER-46698
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Heidelberg, A.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Localized Electrochemical Oxidation of Thin Nb Films in Microscopic and Nanoscopic Dimensions
260 _ _ |a Amsterdam
|b Elsevier
|c 2005
300 _ _ |a 173 - 180
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|v 597
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The mechanism and kinetics of localized anodic oxidation of thin Nb films are investigated by measurements in an electrochemical microcell and in the so-called nanocell, which is formed by water condensation between an AFM-tip and the Nb-substrate in humid air. In both, the microscopic and nanoscopic oxidation, the thickness of generated oxide structures increases linearly with the applied potential in accordance with the so-called high field growth model. The oxide growth factor depends on the polarization time and reaches in both cases for long times a value of about 2.8 nm/V. In the case of AFM tip-induced oxidation at constant voltage the oxide growth rate decreases rapidly with the polarization time, which is in good agreement with the proposed models including a rapid build-up of space charge within the oxide in the initial oxidation stages. The increase of the oxide thickness is limited by the thickness of the thin Nb layer. An experimental procedure for checking the complete local nanooxidation of thin Nb films is proposed and the possibility for preparation of lateral metal-insulator-metal (MIM) structures is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a anodic oxidation
653 2 0 |2 Author
|a AFM
653 2 0 |2 Author
|a nanostructuring
653 2 0 |2 Author
|a thin films
653 2 0 |2 Author
|a niobium
700 1 _ |a Rozenkranz, C.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Schultze, J. W.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Schäpers, T.
|b 3
|u FZJ
|0 P:(DE-Juel1)128634
700 1 _ |a Staikov, G.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB13645
773 _ _ |a 10.1016/j.susc.2004.10.056
|g Vol. 597, p. 173 - 180
|p 173 - 180
|q 597<173 - 180
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 597
|y 2005
|x 0039-6028
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2004.10.056
909 C O |o oai:juser.fz-juelich.de:46698
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-1
|l Institut für Halbleiterschichten und Bauelemente
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB41
|x 1
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 2
970 _ _ |a VDB:(DE-Juel1)73881
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21