000046762 001__ 46762
000046762 005__ 20200423204213.0
000046762 017__ $$aThis version is available at the following Publisher URL: http://jap.aip.org
000046762 0247_ $$2DOI$$a10.1063/1.1337089
000046762 0247_ $$2WOS$$aWOS:000166688300058
000046762 0247_ $$2Handle$$a2128/1736
000046762 037__ $$aPreJuSER-46762
000046762 041__ $$aeng
000046762 082__ $$a530
000046762 084__ $$2WoS$$aPhysics, Applied
000046762 1001_ $$0P:(DE-HGF)0$$aNolte, G.$$b0
000046762 245__ $$aPerturbative analytical solutions of the magnetic forward problem for realistic volume conductors
000046762 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2001
000046762 300__ $$a2360 - 2369
000046762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046762 3367_ $$2DataCite$$aOutput Types/Journal article
000046762 3367_ $$00$$2EndNote$$aJournal Article
000046762 3367_ $$2BibTeX$$aARTICLE
000046762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046762 3367_ $$2DRIVER$$aarticle
000046762 440_0 $$03051$$aJournal of Applied Physics$$v89$$x0021-8979$$y4
000046762 500__ $$aRecord converted from VDB: 12.11.2012
000046762 520__ $$aThe magnetic field induced by a current dipole situated in a realistic volume conductor cannot be computed exactly. Here, we derive approximate analytical solutions based on the fact that in magnetoencephalography the deviation of the volume conductor (i.e., the head) from a spherical approximation is small. We present an explicit integral form which allows to calculate the nth order Taylor expansion of the magnetic field with respect to this deviation from the corresponding solution of the electric problem of order n-1. Especially, for a first order solution of the magnetic problem only the well-known electric solution for a spherical volume conductor is needed. The evaluation of this integral by a series of spherical harmonics results in a fast algorithm for the computation of the external magnetic field which is an excellent approximation of the true field for smooth volume conductor deformations of realistic magnitude. Since the approximation of the magnetic field is exactly curl-free it is equally good for all components. We estimate the performance for a realistic magnitude of deformations by comparing the results to the exact solution for a prolate spheroid. We found a relevant improvement over corresponding solutions given by the boundary element method for superficial sources while the performance is in the same order for deep sources. (C) 2001 American Institute of Physics.
000046762 536__ $$0G:(DE-Juel1)FUEK90$$2G:(DE-HGF)$$aZerebrale Repräsentation$$c40.40.0$$x0
000046762 588__ $$aDataset connected to Web of Science
000046762 650_7 $$2WoSType$$aJ
000046762 7001_ $$0P:(DE-Juel1)132100$$aFieseler, T.$$b1$$uFZJ
000046762 7001_ $$0P:(DE-HGF)0$$aCurio, G.$$b2
000046762 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.1337089$$gVol. 89, p. 2360 - 2369$$p2360 - 2369$$q89<2360 - 2369$$tJournal of applied physics$$v89$$x0021-8979$$y2001
000046762 8564_ $$uhttps://juser.fz-juelich.de/record/46762/files/842.pdf$$yOpenAccess
000046762 8564_ $$uhttps://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000046762 8564_ $$uhttps://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000046762 8564_ $$uhttps://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000046762 909CO $$ooai:juser.fz-juelich.de:46762$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000046762 9131_ $$0G:(DE-Juel1)FUEK90$$bLebenswissenschaften$$k40.40.0$$lMedizinforschung und -technik$$vZerebrale Repräsentation$$x0
000046762 9141_ $$y2001
000046762 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046762 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000046762 9201_ $$0I:(DE-Juel1)VDB54$$d31.12.2006$$gIME$$kIME$$lInstitut für Medizin$$x0
000046762 970__ $$aVDB:(DE-Juel1)842
000046762 980__ $$aVDB
000046762 980__ $$aJUWEL
000046762 980__ $$aConvertedRecord
000046762 980__ $$ajournal
000046762 980__ $$aI:(DE-Juel1)INB-3-20090406
000046762 980__ $$aUNRESTRICTED
000046762 980__ $$aFullTexts
000046762 9801_ $$aFullTexts
000046762 981__ $$aI:(DE-Juel1)INB-3-20090406