001     46762
005     20200423204213.0
017 _ _ |a This version is available at the following Publisher URL: http://jap.aip.org
024 7 _ |a 10.1063/1.1337089
|2 DOI
024 7 _ |a WOS:000166688300058
|2 WOS
024 7 _ |a 2128/1736
|2 Handle
037 _ _ |a PreJuSER-46762
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Nolte, G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Perturbative analytical solutions of the magnetic forward problem for realistic volume conductors
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2001
300 _ _ |a 2360 - 2369
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|y 4
|v 89
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The magnetic field induced by a current dipole situated in a realistic volume conductor cannot be computed exactly. Here, we derive approximate analytical solutions based on the fact that in magnetoencephalography the deviation of the volume conductor (i.e., the head) from a spherical approximation is small. We present an explicit integral form which allows to calculate the nth order Taylor expansion of the magnetic field with respect to this deviation from the corresponding solution of the electric problem of order n-1. Especially, for a first order solution of the magnetic problem only the well-known electric solution for a spherical volume conductor is needed. The evaluation of this integral by a series of spherical harmonics results in a fast algorithm for the computation of the external magnetic field which is an excellent approximation of the true field for smooth volume conductor deformations of realistic magnitude. Since the approximation of the magnetic field is exactly curl-free it is equally good for all components. We estimate the performance for a realistic magnitude of deformations by comparing the results to the exact solution for a prolate spheroid. We found a relevant improvement over corresponding solutions given by the boundary element method for superficial sources while the performance is in the same order for deep sources. (C) 2001 American Institute of Physics.
536 _ _ |a Zerebrale Repräsentation
|c 40.40.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK90
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Fieseler, T.
|0 P:(DE-Juel1)132100
|b 1
|u FZJ
700 1 _ |a Curio, G.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1063/1.1337089
|g Vol. 89, p. 2360 - 2369
|p 2360 - 2369
|q 89<2360 - 2369
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 89
|y 2001
|x 0021-8979
856 4 _ |u https://juser.fz-juelich.de/record/46762/files/842.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/46762/files/842.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:46762
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k 40.40.0
|v Zerebrale Repräsentation
|l Medizinforschung und -technik
|b Lebenswissenschaften
|0 G:(DE-Juel1)FUEK90
|x 0
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IME
|l Institut für Medizin
|d 31.12.2006
|g IME
|0 I:(DE-Juel1)VDB54
|x 0
970 _ _ |a VDB:(DE-Juel1)842
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INB-3-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)INB-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21