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The magnetic field induced by a current dipole situated in a realistic volume conductor cannot be
computed exactly. Here, we derive approximate analytical solutions based on the fact that in
magnetoencephalography the deviation of the volume conddictor the headfrom a spherical
approximation is small. We present an explicit integral form which allows to calculathhader

Taylor expansion of the magnetic field with respect to this deviation from the corresponding
solution of the electric problem of order-1. Especially, for a first order solution of the magnetic
problem only the well-known electric solution for a spherical volume conductor is needed. The
evaluation of this integral by a series of spherical harmonics results in a fast algorithm for the
computation of the external magnetic field which is an excellent approximation of the true field for
smooth volume conductor deformations of realistic magnitude. Since the approximation of the
magnetic field is exactly curl-free it is equally good for all components. We estimate the
performance for a realistic magnitude of deformations by comparing the results to the exact solution
for a prolate spheroid. We found a relevant improvement over corresponding solutions given by the
boundary element method for superficial sources while the performance is in the same order for
deep sources. @001 American Institute of Physic§DOI: 10.1063/1.1337089

I. INTRODUCTION the spherical approximation are small. The magnetic field

. can therefore formally be expressed as a spherical solution
Current source reconstructions from magnetoencephalo- y P P

graphi¢ (MEG) measurements crucially depend on the accuP'us a_correction. Wh_ile_ the functional dependence of this
racy of the forward solution, i.e., the calculation of the mag—Correctlon on the deviation from the sphere can, of course,

netic field due to a dipole placed in a volume conductor.Ot b€ solved exactly, we will derive an equation to exactly
Exact analytical solutions both of the electric and magnetiOmPute the low order Taylor expansion of this functional.
forward problem are only known for special volume Remgrkably, it will turn put that for a first order Taylor ex-
conductor& % with the sphere being the most prominént. Pansion the corresponding solution of the electric probfem
These Specia| volume conductors are in genera| an insuﬂ:is not needed, and the solution for the magnetiC field can be
cient approximation of the inner boundary of the scull, theexpressed as a surprisingly simple integral with no unknown
most relevant part of the whole volume conductor, the headvariables left.

So far, solutions for complex geometries can only be For an explicit evaluation of this integral we have to
obtained by numerical methods solving the differential or theexpress the source, the solution, and the deformation of the
integral form of the corresponding Maxwell equations bysphere in finite series of spherical harmoriit The latter
means of the “finite element method(FEM)!! or the implies that though there is no principal limit in the com-
“boundary element method” (BEM),}271* respectively. plexity of the volume conductor there will be a practical one
While both methods are applicable for a large class of vol-depending on the specific computer implementation of the
ume conductors they are very time consuming and require algorithms. In this sense we make two assumptions on the
large amount of disk space. Furthermore, originally analyti~olume conductor(a) the deformation of the sphere is small
cal operations like differentiatiof '® might lead to large compared to its radius, an@) the deformation is smooth,
errors if applied on solutions given only numerically. While j e, sufficiently fittable by the number of chosen surface pa-
in BEM this drawback can in principle be avoided it is in- rameters. For MEG, both conditions are matched, in particu-

herent in FEM. lar for cortical sources where the upper hemisphere is the
Here, we propose a new method based on the fact thagjevant part of the volume conductor.

for MEG deviations of the realistic volume conductor from This article is organized as follows. In Sec. Il A we re-

call the formal expressions for the magnetic field and the
dElectronic mail: nolte@CS.unm.edu parameterization of the volume conductor. The fundamental
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equation of this article is derived in Sec. Il B where the radial  In order to find an approximate analytical solution we
component of the magnetic field is expressed as a simpleave to analyticallyefinethe surfacé®?°We assume that a
integral. Based on this equation we present in Sec. Il C théunction f exists such that the surface is given by the image
algorithm to compute the magnetic fields in arbitrary direc-of a functionG:[0,7]X[0,27]— R* with

tion. In Sec. IIIlwe present fundamental properties of the [(©,d)sin® cosd

forward calculation, namely convergence, the dependence of
the magnetic field on the spatial frequencies of the deformed G(©,®)=| r(©,®)sin® sin® (5
volume conductor, and computational cost. In Sec. IV we r(®,d)cosO

make detailed comparisons of the perturbative, spherical, and

BEM solutions for a prolate spheroid, and we finally discuss?"

our results in Sec. V. re,0)=R+f(0,d). (6)

Let us make a final remark: we do not present calcula-, . . .
. - R is the unperturbed, constant radius of the spherical ap-
tions for realistic volume conductors found from magnetic

resonance imaging which is beyond the scope of this articlemox'mamn of the real volume conductor. For this param-

Furthermore, since the accuracy of BEM solutions them_eterlzat|on of the realistic volume conductor the integral

selvescrucially depends on dipole depth, direction, and themeasure:is can be explicitly expressed'ds

component of the calculated magnetic field, there is no rig- ) of 1 of
orous way to judge the two different solutions. dS=dOdorsin®|rer——oes— <o - we ). ()
Here we expand in the basis of spherical harmonics up
to orderP
Il. THEORY b
p
A. Backgorund f(O,0)=2 > BpgYpq(® D) ®)
p=0g=-p

Brain activity is quite generally described by a station-

ary, primary currend®(r). The primary current induces a With Bp—q=Bp, sincef is real. We refer to ;) as the
“return” or “volume” current JV(r) which together with multipole coefficients of the realistic surface which are re-

JP(r) makes up the total current(r)=J°(r)+J%(r). In garded as a given input which can be derived from a sub-

contrast to the active padf(r), which can be arbitrary, the J€ct'S cranial magnetic resonance imaging. For phase and
volume current is assumed to be induced by an electric fiel@ormalization conventions of the spherical harmonics we re-

within a mediuni fer to Ref. 19. _ o
v If the volume conductor is sufficiently smooth we can
J'=0(r)E=—0o(r)VV(r), (D expect that we only need a few terms in E8) to describe

whereV(r) is the electric potential at poimtandc(r) is the ~ the head shape with a high accuracy. It was found that an
conductivity. Stationarity implies that the total current must€Xpansion up to ordeP=5 is sufficient to describe details

have vanishing divergence that are as complicated as the néRIExplicit calculations
b are done here up t8==6. Signals of brain activity which can
V[I'(r) = o(r)VV(n)]=0, (2) pe measured with high signal-to-noise ratiand, hence,
which completely determine$ as a functiond(r). making the consideration of a realistic volume conductor
The magnetic field can now formally be calculated fromWorthwhile) basically originates from in the superficial hu-
J using Biot—Savart's law as man cortex close to the upper hemisphere, and we can expect

that our expansion provides a sufficient description of the

W Mo 1 head for this case. In general, the splitting of a volume con-
B(r)= 47rf dVI(r)xv Ir'—r|’ ©) ductor into a sphere and a deformation is not unique. The
] ] o most convenient choice depends on the specific volume con-

In this article we assume that the conductiwitfr) is homo-  gyctor and the region of interest — if one exists. The depen-

geneous and isotropic within a volume conduc@mwith  gence of the forward calculation on this very choice will be
boundarydC. This implies that the volume conductor con- jemonstrated in Sec. IV.

sists of one compartment which is known to be a sufficient
approximation for themagnetic forward calculatiorf*?* B, Perturbative calculation of the magnetic field
However, generalization of the presented method to more - . .

g b In principle the perturbative calculation d@(r') re-

compartments is straightforward and will be briefly dis- . ,
cussed later. For one compartment the magnetic field can peres the knowled_ge of the measut8, the Green's func-
on and the potentia¥ up to thesameorder asB. However,

expressed as a surface integral by means of Green’s théorertfp1 . S
P g y the calculation can be tremendously simplified if one uses

r—r’ ) the same trick as for the spherical case, i.e., we merely cal-
V(r)+B"(r"), (49 culate the radial component &. From this component the
total magnetic field is easily found by means of integration in
whereB™ is the magnetic field resulting from the primary radial direction(yielding the magnetic scalar potenjiand
part of the current density alone ak(is the electric poten- finally taking the gradient. The crucial advantage is that the
tial on the surface of volume conductor. radial part of the measudS does not contribute to the radial

,\_ M0o0
=— X
B(r) 4w Jac [r=r'|3
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component oB, but the nonradial part is of ordérThus, an
nth order calculation of

Br/Eer/'B (9)

requires only the Green’s function aMlup to ordern—1.

Nolte, Fieseler, and Curio

Especially, to calculat® up to first order we only need to
know the electric potential for a spherically symmetric vol-
ume conductor.

For the nonspherical part of the radial componenBof
we explicitly get

8, —B"="¢ [ dodp sinor| - Lot ' e
1B Ty & SInOT| =56 % " sine 70 & < r—r|? ( )
_#0% [ dodosiner| 2 L " Ve,
" an SO 56 % sine a0 % |3 V()
Jd@dcb " Jf | rsin®’ sin(®'— )
sin® r
70 [r—r’|3
1 of|r(cos® sin®’ cogd’'—d)—cosO®’sin®) V(6.© 10
sin® 7P| P (0,2). (10
|
With  the  abbreviations g=sin® sin®’ cos®’—®) 9GO gf 9GO of
’ = 0
+cos®’ cos® and 47rr fd do ( D 20 90 7B
1 2 inf
G=G(r,r')y=—— (12) +0O(f9)+B,. (15)
r—r’
| | C. Explicit computation of the magnetic field
we express the terms in curly brackets as To explicitly evaluate the magnetic field for a dipolar
source we express all functions in the integral kernel of Eq.
rsin®’ sin(®’ - (1)) 1 &G 1 r-r'g of (15) in series of spherical harmonics. Whilés already for-
Ir—r'[? ' sin® 0’;([) r'sin® |r—r'[3 oD mally given in Eq.(8) andG° is well known to be
(12
- 47 R
GO
r
and ( |r_r | Zo m=—n 2n+lr'n+1
r{cos® sin®' cog®'—P)—cosO’ sinO ] Y2 (0,®)Y, (0, ) .
[r—r'|® N2
nm
149G 1 r-r 'g of .
— 2 with
r’ (9®+ ! |r_r |3 (9(':") (13)
Inserting this into Eq(10) we finally arrive at the re- f dOdP sin®Y} (0,D)Y, (0',d")
markably simple result
4w (n+[m)! an
B —Mogfd(adcb G of  9G of Vi 4 T 2n+1 (n—[mptom
" "5 0 90 e B (19

Note that if both the volume conductor and the sou(arad,
hence,V) are axially symmetrid¢independent ofP) we ar-

rive after partial integration at the well known result that the

magnetic field vanishes outside the volume conductor.
The crucial point is that there is no term of ord@¢f°)

we recall that for a unit charge monopole placed athe
potential on a spherical surface resfs

k

E Py

ro
Rk+ 1’
(18)

1n|®¢w
Nkl

(®Oiq)0)

ngon(r!ro)_

in Eqg. (14), and hence, for a first order approximation we
may set V to be the potential on the surface of a sphericalhe potential for a current dipole with momedtcan be

volume conductorY—V?) and evaluatés on the spherical
surface G— G°) resulting in

found from Eq.(18) upon differentiation with respect to the
origin.1>?*This leads to
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o 1 tion B. For p=0 these couplings vanish; far=1 the cou-
Viip(©,P) = ;% Y1 (0, P) (19 plings correspond to a diagonal matrix, and for genpridle
. “coupling matrix” has p side/main diagonals.
with One very important consequence is that for firptéhe
Ky * convergence is controlled by, /r’, the ratio of the sensor
1roYg(0g,Dg) . . .

, (200  radius and the source radius, since, apart from constant fac-
tors, the radius of the unperturbed sphere R occurring in the
factors R/r’)" in Eq. (22) and (o/R)¥ contained in the
source coefficienty,, cancels out. Now, in a practical appli-
cationry/r’ is always sufficiently smaller than 1: magnetic
sensors cannot be put directly on the head surface and corti-
rcal current sources reside at least 15 mm below the skin-air
boundary; hence, convergence will be excellent as is shown
in the next section.

Coming back to the calculation d the initialization
consists of two steps.

Q= Z 0K
ki Ok RAINZ

whereV, denotes the gradient with respectrin

Insertion ofG®, VO, andf into Eq.(15) leads to a solu-
tion for the radial component of the magnetic field. Sice
is curl free(in the quasistatic approximatipthe complete
magnetic field can be found from first calculating the scala
magnetic potentiap and then taking its gradient

;
B=Vc1>:vf B, . (21)

After expandingB, in a series of spherical harmonics (1) For the surface coefficients, which parameterizes the
integration along the radial direction is straightforward end- ~ perturbation around the sphere with radRisalculate

ing up with the final solution ~ R 5
" N n p p N K CnmkFW o ,qucnmqul- (26)
B(r')=4_- 21 22 Z kzl |Zk v’ (2) For each sensor at position which measures in di-
SR rectionn; compute
Yo,m RnJrl,quCnmqulakl Y
, +BsPyy’ i _ Mo ,
Cnel (2ntD(nt1) o ) (@2 Whm=EHiVﬁ (27)
i
with B, and «,, defined in Eq.(8) and Eq.(20), respec-
tively, and and
T 2m 1 i = [
Cnmqulz jo d@fo d(DN_Z kl % q’nanmkl- (28)
" . The vectorsd' are the input for the explicit calculation
P Y om Npq of B for each source. We point out again that they have to be

IY* oY
( nm Yo, (23

90  Id Jb 90 calculated only once for each volume conductor and sensor
configuration. They correspond to the “lead field” of thif

sph . . )
\éVS;:)erBHe(rjfnv(\)/:aeig\]/z S;rlgggn T?éi?ezptmzms:ﬁlrxgt% n}?mct:gn sensor mapping the surface potential in the basis of spherical
) ! y harmonics to the magnetic field.

brop ) . iy . . P ith sensor, we have to compuig, according to Eq(20) for
that the minus sign arising from integration of ¥ in Eq. , ;
. S . each source and finally arrive at
(21) has been put into the order of derivatives in E2f).
At first sight it seems that evaluation of the sum in Eq.
(23) over six indices is extremely time consuming, making it

useless for practical applications. This is indeed not the casrs ks F tational simplicit ¢ lated the ab
if, as in BEM, the computation is split into an initialization emarks. For notational simplicity we tormutated the above

step which is independent of the source and a final step foz?.lgonthm using CO”_‘F"GX_ ”“”_“bers- Hoyvever, n prac_tlce one
each source. can save computation time if one splits the terms into real

For the initialization note that th,pqiin Eq. (23) are and imaginary parts and makes use of the fact thdf and

0
fixed numbers which need to be computed only once and caﬁ ?retr?” r?ali . ded ith inal
be storedup to given order. Alternatively one may generate . d n b ee T((.: ne casefwe en § utp \tNI ?ums ?verfa smgﬁ
formulas(e.g., with Maple which compute the nonvanishing Index by maxing Use ot a coordinale transiormation for €ac

elements for givem,q as a function ok andl. The latter is source rotating it to thg axis.* However, for largep this
possible because tHB,mpqq are sparse: the nonvanishing Ig:etshextremely complicated, and caqnot be recommended.
elements are constrained by urt ermore, the convergence pr(_)pertles are far better f_orthe
magnetic case than for the electric case. The computation of

m=q-+I (24)  the double sums is sufficiently fast, as shown in the next
section.

The calculation of the magnetic field requires the evalu-
The C,,mpqiMay be regarded as coupling constants betweeation of spherical harmonics and their derivatives. For the
different spherical harmonics of the sout¢® and the solu- former we use standard algorithiftsand for the latter we

Bi=% DL+ B, (29)

n=k+2j with —|p|+1<2j<|p|-1. (25
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sensor calculated up to orddr As a sensor configuration we

1
10 have chosen a virtual whole head system measuring the ra-
10° dial component of the magnetic field equally distributed
T around the whole volume conductor at raditis The source
s, 10T was defined to be a radial dipole placed on thaxis at
Z 102l heightry=9 cm. The volume conductor corresponds to the
v prolate spheroid as used in the next section and the pertur-
103t SO ] bative correction was calculated with respect to a sphere of
v radiusR=10 cm. As one can see, for a measuring system
10T e with radiusr’ =15 cm corresponding to a source eccentricity

of ro/r’=0.6 the magnetic correction has converged Nor
=20 up to 0.1%. Indeed, the chosen sensor configuration
FIG. 1. Convergence: The relative difference between a magnetic field cafl@s “bad” convergence properties: for a planar system at
culated up to ordeN of spherical harmonics and the same field calculated height z’ =12 cm the “error” (N) is smaller than for the

up to order 40 for a radial dipole placed on the surfazg=(© cm of a  corresponding whole head system. Moreover, for a radial
spheroid, covered by a MEG whole head system of radlusThe series ;16 individual terms in the series basically cancel: thus the
converge exponentially as(z,/r’)". . . . cec

considered case is exceptionally difficult.

For more accurate descriptions of the volume conductor
derived simple relations which reduce this problem to thecorrespcl)lndmg ('[10 dlarE'er values ffa larger Vilgg oN Ilz
former (see the Appendix eventually needed. However, choosing, ely= 30 wou

still result in very fast forward calculations. Furthermore, the
large spatial frequencidtargep) of the surface deformation

Ill. PROPERTIES OF THE FORWARD CALCULATION have in general a small amplitude, and hence, for these co-
A. Convergence efficients a relatively less accurate forward calculation is suf-
: ficient.

The final perturbative solution for the magnetic field in-
duced by a current dipole was given in E82) in terms of a
sum of spherical harmonics. Practical applicability of this
formula depends on its convergence behavior. Similar to the ~ For the algorithm to compute the external magnetic field
electric case the series converges exponentially wjttt’ the order of spherical harmonics to parametrize the realistic
wherer , is the radius of the source andlis the radius of the ~surface is limited by an in principle arbitrary though finite
measuring point. In contrast to the latter, magnetic sensor§lumberP. The largerP is chosen the higher is the compu-
being inside a dewar filled with liquid helium, cannot be tational cost. However, for a square integrable deformdtion
placed directly on the skin. In practice this means that evef@ny continuous deformation is square integratitee se-
for very superficial sources,/r’ is rarely larger than 0.5, quence of surface coefficients, if written in the basis of nor-
and one can expect the series to converge very fast. malized spherical harmonics, converges to zero. Moreover,

Here, some care has to be taken since the “matrix” Eq.for smooth deformations this convergence will be rapid.

(23) contains off-diagonals extremely increasing the required ~ Apart from this general considerations the question
number of terms. In general, for a surface parameterizatioafises of how large is the impact of individual frequency
with spherical harmonics up to ordé corresponding to components on the external field. In fact, if the surface po-
(P+1)? parameters a “solution spherical harmonic” of or- tential is relatively smooth and the sensor configuration is
dern can couplgat mosj to a “source spherical harmonic” not too close to the surface, contributions from higher order
of ordern=(P—1). Hence, the required order of the expan-frequency surface deformations will basically cancel out, i.e.,
sion of the solution may increase 1B~ 1 compared to the the mapping of the surface deformations to the magnetic
naive expectation. At this point it is obvious that the sparsefield effectively acts as a spatial low pass filter.

ness of the coupling matrices in E(@6) is essential since To show this we have again used a spherical whole head
otherwise the relevant expansion parameters would ha\@ystem, as described in the last subsection, with radiugo
been bothry/R and R/r’ with R being the radius of the the spherical volume conductor of radis=10 cm we
unperturbed volume conductor. added “pure” normalized multipolar deformations

In our computer implementation we go up to ord%r_  Bog=p.p04.aNpq (31)
=6 corresponding to 49 parameters to describe the realistic or o _
volume conductor. In this case calculating the sum in Eqresulting in a correction to the magnetic fieBgqu in theith
(29) lfp todN= 20 is sufficient as one can see in Fig. 1, wheresensor. Now for each ordex, we calculated the mean
we plotte

B. Dependence on spatial frequencies

1 Po
1/2 =
G(N)E[zi[Bimm—Bi(N)]z] 0(P0)= 5557 o 2

30 =-po
3,B%(40) 30 .
! As a source we have chosen a radial dipole placed on the
as a function ofN, the order of spherical harmonics in Eq. z-axis at heightzy. In Fig. 2 we showg(p,) for three values
(22). B{(N) denotes the perturbative magnetic field initre  of r’ and for various dipole depths. We see a clear exponen-

1/2

2 (Bp,)’ (32
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10.00 j i AR 10 i )

- = r=18cm
1.00\ L

g(po ) [o.u.]
I

0.10f ~< Fmm~el T

~
0.0 ' ' ' ’ ' ' . - FIG. 2. The average contribution of different orders of
10 ' ' ' ' 10 ' ' - the surface parameterization to the external magnetic
field for whole head systems of radius and for vari-
ous dipole locationsz).

a(po ) [o.u.]

tial decay of the norms of the magnetic fields. This exponennature of perturbation theory: the unperturbed, spherical ap-
tial decay is the larger the farer the system is from the volproximation should be as accurate as possible in order to
ume conductor. For more superficial sources this decay iebtain a small correction.
less pronounced eventually resulting in an essentially con-  For the initialization we first construct the mati ac-
stantg(po) for sources placed on the surface of the volumecording to Eq.(26). For eachp,q and going up to ordeN
conductor go=R=10 cm. both in the expansion of the source and the solution requires
In practice the distance from the dewar to the innerthe calculation of~pN? matrix elements, and hence foP (
boundary of the skull is always large whereas the source cas 1)? different values ofp,q the total cost increases as
in general be quite close to this boundary. To conclude orP3N2, For N=20 andP =6 this takes about 1 s. Now, for
this issue, the assumpno.n of smpc_)thness of the volum_e Coré"ach sensct has to be applied oW’ [see Eq(28)]. Since
e ol ecesery super seutoe re onsiere® nas - ofiagonais the ol cost s proporonal t
2N2N, with N, being the number of channels. Foi,

conductor can always be neglected. =50, P=6, andN=20 this takes abdul s resulting in a
total cost 6 2 s for the initialization.
Finally, in addition to the spherical solution we have to
The computation of the magnetic field consists of threeconstructa,, according to Eq(20) and calculate the “scalar
steps:(a) the parameterization of a given surface in a seriegroduct” with @, for each sensor to obtain the magnetic
of spherical harmonicsb) the initialization for given surface field [see Eq.(29)]. For N.=50 channels a single forward
parameters and sensor configuration, érjcthe actual cal- calculation takes about 14 ms.
culation for each source. Computation times for each step are  Both the initialization and the final computation of the
given for a HP 900QB180L) with 180 MHz. magnetic field involve the evaluation of spherical harmonics
To describe a surface by spherical harmonics we assumhd their derivatives. We would like to note that, with the
that it is given as a set & points. Here, we first fit a sphere help of the rules in the Appendix, the respective computa-
to these points which is a simple nonlinear fit with 4 param-tional cost can be neglected.
eters: the cost is proportional fd. Then we keep these The required disk space is considerably low because
parameters fixed and fit the deviation up to ordemith relatively small sparse matrices are involved. The coupling
(P+1)? parameters, which is a linear fit: the cost is propor-matrix C in Eq. (26) has only ~P2N? nonvanishing ele-
tional to (P+1)*N. Since theN points of the surface are ments and is constructed from P3N? nonvanishing fixed
in general not equally distributed as a function of surfacenumbersC,,qx. Additionally, the “lead fields” | re-
angles we do not make use of the orthogonality of the spheriguire the storage of~N:N? numbers which is in general
cal harmonics. FoP=6 andN,=1600, as was used for the negligible.
prolate spheroid in the next section, this whole fit takes about
1.2 s. The splitting of the nonlinear sphere fit and the linealV- COMPARISON WITH THE PROLATE SPHEROID
deviation fit speeds ufand simplifieg the calculation. How- As an illustrative example we will calculate the pertur-
ever, we want to emphasize that this rather follows from thebative solution for the prolate spheroid, which roughly cor-

C. Computational cost
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responds to the form of a realistic head volume conductor. 7Y A L LI
We strongly emphasize again that the perturbation theory i ]
can be applied to arbitrary volume conductors as long as they 1ol
are sufficiently smooth and as long as the deviation from a i
spherical fit is not too large. However, the spheroid is the [
only nonspherical volume conductor for which an exact so- ST
lution exists, thus making it possible to evaluate the pro- T :
posed approximate solution. Note, that the halfspace can be < of : spheroid
regarded as a special case of the spherical volume " I ; ':p":;l.:zrii':
conductor® Moreover, one cannot perturb around the half- 5[
space within the proposed framework because the eccentric- i
ity of any source is 1. _103
The prolate spheroid is an egg-shaped surface defined by i
the image of the function sb ]
— - - 1 1
—£cosO ' 0 ° x [?:m] ° ° °
G(O,D)=| VE—c?sinOsind |, (33)

FIG. 3. The prolate spheroid and two spherical approximations. The ap-
‘lgz_czsin@ cos® proximation of the spheroid by spherical harmonics up to ofer6 is
practically exact and not included in the figure. The dipole location and

Whereg andc are fixed numbers. Here, we rotated the vol- orientation are varied in the analysis — the plot shows a typical example.
ume conductor as compared to the standard definition by 90°

around they axis in order to match the convention that the

coordinate corresponds to vertical direction. are sufficient for a satisfying convergence, we compared the

Here we choosé=12 cm andc= 65 cm correspond- results to the results obtained with a considerable higher
ing tol=9 cm (12 cm for the short(long) half axis of the  number of terms, namely 100. The relative differences of the
spheroid. These values roughly correspond to the typical dissolutions for 60 and 100 terms were less than “.éor all
tance ear to ear and front to back for a realistic case. Thisources used in this article, which is sufficient to consider the
spheroid rather fits the skin than the inner skull of a typicalsolutions as “exact” for the comparisons to the different
head. However, relative errors do not depend on equal scabpproximating solutions. The cutoff error is highest for the
transformations of source, volume conductor, and sensaources closest to the border of the volume conductgr (
configuration. Moreover, the present choice is rather pessi= =89 mm) and decreases rapidly with increasing distance
mistic in the sense that superficial sources have larger eccefrom the border, e.g., fofzo|<80 mm the relative cutoff
tricities than in typical real cases. error with 60 terms is only about 16.

To use perturbation theory, the spheroid is approximated Let us first show two examples. In Fig. 4 we show the
by a sphere plus a correction. This description is not uniguecomponents of the magnetic fields corresponding to a dipole
A reasonable choice is to use a fit both for the sphere and fqulaced on thez axis at heightzy=4.5 cm pointing intox
the correction. However, it can be better to choose the spheigirection. The perturbative solution was calculated with re-
such that it approximates the realistic volume conductor in apect to the fitted spher&kE& 10 cm). The spherical solution
region of interest: especially, for realistic cases, the spher@upper, middl¢ deviates from the exactipper, lefi by 14%
should rather fit the upper hemisphere if one is interested iwhile the perturbative solutiofupper, right is 20 times
cortical sources. Here, we discuss only two out of an infinitemore accurate having an error of only 0.7%. In the lower
number of possibilities(a) the sphere is chosen as a fit re- panel we show the respective difference fields. The perturba-
sulting in a radius o0R=10 cm andb) the sphere is defined tive correction(lower, middlg is in very good agreement to
to be the largest inner sphere having a radiuRefd cm in  the ideal correctior{lower, left), the exact field minus the
order to be accurate on “top” of the volume conductor. spherical solution: the difference of the lattiwer, right is

For both spheres the correction according to E6sand  about 20 times smaller than the ideal correction.

(8) is defined as a least squares fit Np=1600 surface An interesting second example can be seen in Fig. 5.
points. The spheroid and the two spheres are shown in Fig. 3ere the dipole is located ay=—1 cm and points intey

The spheres plus corrections up to oréer 6 fit the spher-  direction — the most difficult case for a nonsuperficial di-
oid with an accuracy of 99.99%: they are practically indis-pole. The perturbative solution was calculated with the inner
tinguishable from the spheroid and are, hence, omitted in thephere. While the spherical approximation breaks down
figure. As measuring device we choose in this section a plasompletely, the perturbative solution correctly represents the
nar array of magnetometers at height12 cm. For definite- complicated structure of the exact solution.

ness, dipole moments are set to 20 nAm throughout this sec- In the following we want to discuss in more detail the
tion. dependence of the accuracy of the forward calculations on

To calculate the solutions of the prolate spheroid we us¢éhe source parameters. We first restrict ourselves to the
our arbitrary-precision implementatithof the Cuffin/Cohen  spherical and the perturbative solutions; the performance of
series expansiolf. The first 60 terms of the expansion were BEM, which was also studied for comparison, will be dis-
considered for the calculations. To make sure that 60 termsussed separately.
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exact sol. (A=10fT) spherical sol. (A=10fT) pert. sol. (A=10fT)
10F
5.
> o]
-5 ' -
iy ; FIG. 4. Calcutated fields for a dipole
—10} ) ) . located at Xq.Yo.Zp)=(0,0,4.5) cm
- = ’ . : pointing in x direction. Upper panel:
-0 -5 0 5 0 exact solutior(left), spherical approxi-
. mation (middle), perturbative approxi-
exact—spherical (A=1fT)  pert. correct. (A=1fT) exact—pert. sol. (4=0.1fT) mation (right). Lower panel: ideal cor-

T ™ T rection to the spheréeft), calculated
1 ] correction (middle), difference (ideal
calculated of the correctiongright).

X X X
In Fig. 6 this accuracy, defined as and for the perturbative solutions with respect to a fitted
S.(BL B )2 112 sphere of radiuR= 10 cm(“pert. @) and to an inner sphere
€,= I} “exact ~appro , (34) of radiusR=9 cm(“pert. b).” Apart from the central dipole
i (Bexacd” pointing inz direction the inner sphere works better than the

where a=x,y,z denotes the measured component of thditted sphere. Especially, if a “radial” dipole approaches the
magnetic field, is shown as a function of dipole depgh ~ surface atzo=9 cm the fitted sphere may result in large
The accuracy was calculated for the spherical approximatiorelative errors. The reason for this is that the exact solution

exact sol. (A=0.5fT) spherical sol. (A=0.5fT) pert. sol. (A=0.5fT)

T ™ T T T T T T

L a L

=10 -5 0 5 110 -1 -5 0 S5 10 -0 -5 0 5 10 FIG. 5. Same as Fig. 4 for a dipole

) located at Xg,Yo,20)=(0,0,—1) cm
exact—spherical (A=0.5fT) pert. correct. (A=0.5fT)  exact—pert. sol. (A=0.01fT) pointing iny direction.
SN 10} EeTey 1

o

-5

1 <iof
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Dipole in x—direction Dipole in y—direction Dipole in z—-direction
10.00 — sphere' - - p'erl. b i
----- pert. @ =.= BEM l'
1.00F !1 T B
—i ] i
g 0.10F RN Eld
e T - = -’:}. i FIG. 6. Upper panel: Error of the forward calculation
0.01 M, 7 S for various approximations of the forward calculation
,,,,,,,, as a function of dipole height for tecomponent of the
magnetic field. Lower panel: Ratio of the corresponding
100 E p error of thex component and the component. The
i 1 ! terms pert. a and pert. b refer to the perturbative expan-
i : '\ ,' sions around a sphere of radiis=10 cm andR=9
Lo 1] HIRA 7 cm, respectively.
S R / o o
© y‘s._T_-n-_l--..’-'.'...- - <. - ".__ \":.-a.—.'-ﬂrhf' ,
1 prber - .‘dﬁ-ﬂk\ =
-5 0 5 -5 0 5 -5 0 5
z, fem] 2o [em] 2o [em]

converges to zero in this limit: if the perturbative solution is However, this extreme breakdown of performance is basi-
calculated with a sphere of correct radias the considered cally caused by the vanishing of the true solution. Perturba-
location it has this same property and hence the error stayion theory based on the inner sphere works always better
finite. However, also for other dipole directions the innerthan BEM while the corresponding solution for the fitted
sphere is more appropriate for superficial sources as was ttephere is eventually worse in regions of good performance of
purpose of this very choice. BEM.

In the center of the volume conductor the relative error  The breakdown of BEM in the vicinity of the surface is
eventually increases as can be seen for a dipole pointigg inmore pronounced if a nonvertical field component is studied.
direction. The basic reason is that tangential dipoles get morerom the lower panel of Fig. 6 it can be seen that analytical
radial when approaching the center and, hence, the exasblutions, being exactly curl-free, behave similar for all field
solution decreases. Remarkably, this increase cannot be seemmponents. In contrast, a large increase of the error of BEM
for the dipole inx direction: the exact and the perturbative is observed at the boundaries: the contribution of the volume
solution converge to zero due to axial symmetry resulting incurrent arises from relatively few, basically vertical second-
a finite error. We note, that for this case the poinzgt 0 ary currentdi.e., triangleg which induce a basically nonver-
was excluded in the figure since for the accuracy one dividetical magnetic field. If thex component of the magnetic field
zero by zero. is studied then also the “bad” perturbative solutiiitted

Quite generally, perturbation theory improves the spherispherg¢ has always smaller errors than BEM for sources
cal approximation by about a factor 10—20 with exceptionalcloser than 3 cm to the surface, and even the spherical solu-
cases in both directions: while one should be careful withtion is better than BEM for sources closer than 1 cm.
radial dipoles approaching the surface, the improvement due
fco perturpatlve' corrections can bg much more dramatic fO(/_ CONCLUSION
intermediate dipoles eventually giving rise to an error de-
crease by a factor 100. We presented the theory to compute an analytical ap-

Finally, we want to compare the results for the analyticalproximation of the external magnetic field due to a source
approximation with the corresponding numerical solutioninside a realistic volume conductor. We assumed that the
given by BEM using the program “Curry(Philips). For the  volume conductor can be described by a sphere plus a small
latter we used a surface parameterization consisting of 261€orrection. It was shown that a first order Taylor expansion
triangles with a typical side length of about 8 mm. In fact, of the magnetic field with respect to this correction can be
we used a given liquor triangularization and transformed thejiven without referring to the corresponding electric solu-
triangles and normals to parametrize the spheroid. tion. The central result of the proposed theory, given in Eqg.

As can be seen from Fig. 6 the relative accuracy of BEM(14), is a remarkably simple integral for the calculation of
depends very much on the location and the direction of théhe radial component of the magnetic field, from which all
dipole. Generally, BEM becomes poor in the vicinity of the other components follow resulting in an exactly curl-free ap-
surface of the volume conductor: for tae@omponent of the proximation.
magnetic field this increase of the error starts at about 1 cm  An explicit computer implementation of the theory can
distance & triangle length from the surface and becomes only be done for a finite parameterization of the realistic
unacceptable at half the triangle length in agreement witlvolume conductor. Then, perturbation theory leads to a cou-
other findings:? pling of input, the surface potential calculated in the spheri-

BEM works satisfactory for nonsuperficial sources apartcal approximation, and output, the magnetic field at some
from the case of a central dipole pointing indirection.  specific location, consisting of a sparse and diagonally domi-
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nant matrix. The latter property ensures that the final solu- Fom(N=r"Y, n(0,®) (A1)
tion, which is written as a series of spherical harmonics,
converges as-(rq/r’')" wherer, (r') denotes the radial then from standard recursion relations it follows that
coordinate of the sourdsensoy. In practice, even for super-
ficial sourcesry/r’ is substantially smaller than 1 resulting
in very fast algorithms for both the initialization and the
actual forward calculation.
. . J 1%

We presented a detailed analysis of the performance c(f__i _) Fom=(n+m—1)(n+mMF,_;m_1 VYm>0,
the proposed approximation by comparing it to the analytica ox - ady) > ’
solution for a(prolate spheroid, the only nontrivial volume (A3)
conductor where an exact solution is known. With the long ,
axis being 33% larger than the two short axes the assumed-F, ,=(n+m)F,_;,, Vm=0. (A4)
deformation of the sphere is rather an overestimate of real? '
istic deformations. Quite generally we found that the pertur-the corresponding rules fan<0 in Eq. (A2) follow from
bative solution improves the spherical approximation by aomplex conjugation of EqA3) and similarly for the other
factor 10—20 with exceptions in both directions. Especiallyryjes. Calculation oW F,,,, corresponds to simple combina-

we found no problems with very superficial tangentialijons of Egs.(A2)—(A4). Here, we have to calculate the gra-

sources; radial sources eventually show up a diverg@  gients ofr"Y, , andY,, ,/r"**. The latter can be calculated
tive error because the exact solution vanishes for sourcegom Eqs.(AZ)—(A4) b’y writing Y, /I 1=F, . /r2ntL,
placed on the surface giving rise to an intrinsically singular ’ '
performance measure.

For comparison we also calculated the corresponding o
BEM solutions. We found BEM to be satisfactory for deep ‘M- S. Handdinen, R. Hari, R. J. limoniemi, J. Knuutila, and O. V. Lou-
sources with an error being in the same order as the perturzEaSFT;;kRivA'\;gf’ 'Pir;g? f;g’é%f:%
bative approach. Details, however, depend on the dipole di2j. sarvas, Phys. Med. Bid2, 11 (1987).
rection and the location and on the specific realization of the*J. C. de Munck and M. J. Peters, IEEE Trans. Biomed. Efy.1166
perturbative approximation. BEM eventually breaks down S(Dlg/gaémd F. H. Terry, and R. E. Ideker, IEEE Trans. Biomed. £
for superficial sources. While the corresponding increase of ;,; ('1973_% e, o ’ ‘ B
the error occurs only for sources very close to the surface ¢p. M. Berry, Ann. N.Y. Acad. Sci65, 1126(1956.

(=5 mm) if an essentially radia(here: vertical component ;J- C. de Munck, J. Appl. Phy§4, 464 (1988.

of the magnetic field is studied, the tangenttare: horizon- gi: ;’f‘f;g;gua;g’nJénzr‘g‘_”g;jﬁﬁpf_ I'Azzﬁgb:ylé%%???ig%.

tal) field components show a breakdown of the performanceog . cuffin and D. Cohen, IEEE Trans. Biomed. Ead, 372 (1977.
much earlier &2 cm). This is in sharp contrast to analytical 1*M. Rosenfeld, R. Tanami, and S. Abboud, IEEE Trans. Biomed. B8g.
methods which lead to exactly curl-free solutions. Lo (1996. _

We demonstrated the performance of a first order perturl-si' ?5 Ici‘zr'g'lj’::r']" ;(E'Zﬁa?ga”;fgmsegéiﬁﬁtﬁﬁﬁggf'Biome o, Eng
bation theory for a single surface parametrized by 49 param- 445 (1999, ' ' ' ’ B
eters. Generalizations can be done with respect to all aspectéMm. Fuchs, R. Drenckhahn, H.-A. Wischmann, and M. Wagner, IEEE
especially in conjunction with the corresponding electric Trans. Biomed. Engi5, 980 (1998.
solution'® the theoretical basis is given, and the computa~le$' yogiggid%}fzzg’ Eligr;y%oﬁerlozn?%%?% rans. Biomed. B8
tional cost, being so far extremely low, can be expected to be 394 (1996, ' ' ' e

within acceptable limits. 17y. Wang, IEEE Trans. Biomed. Eng5, 131 (1998.

18G. Nolte and G. Curio, IEEE Trans. Biomed. Er, 400 (1999.

19G. Nolte and G. Curio, J. Appl. Phy86, 2800(1999.

ACKNOWLEDGMENTS 20C. Purcell, T. Mashiko, K. Okada, and K. Ueno, IEEE Trans. Biomed.
Supported by DFG Ma 1782/3. The authors would like , En9:38 303 (199D.

" - M. X. Huang, J. C. Mosher, and R. M. Leahy, Phys. Med. Bigl, 423
to extend our appreciations to Samual J. Williamson and Jan(lggg_ g v

— 4 —

X 0y Fn,m:_anl,m+l VmBO, (A2)

C. de Munck for helpful discussions. 22\M. S. Hamdéinen and J. Sarvas, IEEE Trans. Biomed. EBE, 165
(1989.

APPENDIX 237, Zhang and D. L. Jewett, Electroencephalogr. Clin. Neurophy8®l1
(1993.

Here, we present some very useful relations to calculatd'A. S. Ferguson and D. Durand, J. Appl. Phys, 3107(1992.
P ; ; : W, H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery
derivatives of spherical harmonics, which are not known so . P 7 e ' . :
. . . Numerical Recipes in @ambridge University Press, Cambridge, 1992
far. Phase and normalization conventions are as in Ref. 19 Fieseler Analytic Source and Volume Conductor Models for Biomag-

Let us define netic Fields(Shaker, Aachen, Germany, 2000

Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



