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Perturbative analytical solutions of the magnetic forward problem
for realistic volume conductors
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The magnetic field induced by a current dipole situated in a realistic volume conductor cannot be
computed exactly. Here, we derive approximate analytical solutions based on the fact that in
magnetoencephalography the deviation of the volume conductor~i.e., the head! from a spherical
approximation is small. We present an explicit integral form which allows to calculate thenth order
Taylor expansion of the magnetic field with respect to this deviation from the corresponding
solution of the electric problem of ordern21. Especially, for a first order solution of the magnetic
problem only the well-known electric solution for a spherical volume conductor is needed. The
evaluation of this integral by a series of spherical harmonics results in a fast algorithm for the
computation of the external magnetic field which is an excellent approximation of the true field for
smooth volume conductor deformations of realistic magnitude. Since the approximation of the
magnetic field is exactly curl-free it is equally good for all components. We estimate the
performance for a realistic magnitude of deformations by comparing the results to the exact solution
for a prolate spheroid. We found a relevant improvement over corresponding solutions given by the
boundary element method for superficial sources while the performance is in the same order for
deep sources. ©2001 American Institute of Physics.@DOI: 10.1063/1.1337089#
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I. INTRODUCTION

Current source reconstructions from magnetoenceph
graphic1 ~MEG! measurements crucially depend on the ac
racy of the forward solution, i.e., the calculation of the ma
netic field due to a dipole placed in a volume conduct
Exact analytical solutions both of the electric and magne
forward problem are only known for special volum
conductors2–10 with the sphere being the most prominen3

These special volume conductors are in general an ins
cient approximation of the inner boundary of the scull, t
most relevant part of the whole volume conductor, the he

So far, solutions for complex geometries can only
obtained by numerical methods solving the differential or
integral form of the corresponding Maxwell equations
means of the ‘‘finite element method’’~FEM!11 or the
‘‘boundary element method’’ ~BEM!,12–14 respectively.
While both methods are applicable for a large class of v
ume conductors they are very time consuming and requi
large amount of disk space. Furthermore, originally anal
cal operations like differentiation15–18 might lead to large
errors if applied on solutions given only numerically. Whi
in BEM this drawback can in principle be avoided it is i
herent in FEM.

Here, we propose a new method based on the fact
for MEG deviations of the realistic volume conductor fro

a!Electronic mail: nolte@CS.unm.edu
2360021-8979/2001/89(4)/2360/10/$18.00
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the spherical approximation are small. The magnetic fi
can therefore formally be expressed as a spherical solu
plus a correction. While the functional dependence of t
correction on the deviation from the sphere can, of cou
not be solved exactly, we will derive an equation to exac
compute the low order Taylor expansion of this function
Remarkably, it will turn out that for a first order Taylor ex
pansion the corresponding solution of the electric problem19

is not needed, and the solution for the magnetic field can
expressed as a surprisingly simple integral with no unkno
variables left.

For an explicit evaluation of this integral we have
express the source, the solution, and the deformation of
sphere in finite series of spherical harmonics.19,20 The latter
implies that though there is no principal limit in the com
plexity of the volume conductor there will be a practical o
depending on the specific computer implementation of
algorithms. In this sense we make two assumptions on
volume conductor:~a! the deformation of the sphere is sma
compared to its radius, and~b! the deformation is smooth
i.e., sufficiently fittable by the number of chosen surface
rameters. For MEG, both conditions are matched, in parti
lar for cortical sources where the upper hemisphere is
relevant part of the volume conductor.

This article is organized as follows. In Sec. II A we r
call the formal expressions for the magnetic field and
parameterization of the volume conductor. The fundame
0 © 2001 American Institute of Physics
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equation of this article is derived in Sec. II B where the rad
component of the magnetic field is expressed as a sim
integral. Based on this equation we present in Sec. II C
algorithm to compute the magnetic fields in arbitrary dire
tion. In Sec. III we present fundamental properties of
forward calculation, namely convergence, the dependenc
the magnetic field on the spatial frequencies of the deform
volume conductor, and computational cost. In Sec. IV
make detailed comparisons of the perturbative, spherical,
BEM solutions for a prolate spheroid, and we finally discu
our results in Sec. V.

Let us make a final remark: we do not present calcu
tions for realistic volume conductors found from magne
resonance imaging which is beyond the scope of this arti
Furthermore, since the accuracy of BEM solutions the
selvescrucially depends on dipole depth, direction, and t
component of the calculated magnetic field, there is no
orous way to judge the two different solutions.

II. THEORY

A. Backgorund

Brain activity is quite generally described by a statio
ary, primary currentJP(r ). The primary current induces
‘‘return’’ or ‘‘volume’’ current JV(r ) which together with
JP(r ) makes up the total currentJ(r )5JP(r )1JV(r ). In
contrast to the active partJP(r ), which can be arbitrary, the
volume current is assumed to be induced by an electric fi
within a medium3

JV5s~r !E52s~r !¹V~r !, ~1!

whereV(r ) is the electric potential at pointr ands(r ) is the
conductivity. Stationarity implies that the total current mu
have vanishing divergence

¹@JP~r !2s~r !¹V~r !#50, ~2!

which completely determinesJ as a functionJP(r ).
The magnetic field can now formally be calculated fro

J using Biot–Savart’s law as

B~r 8!52
m0

4pE dVJ~r !3¹
1

ur 82r u
. ~3!

In this article we assume that the conductivitys(r ) is homo-
geneous and isotropic within a volume conductorC with
boundary]C. This implies that the volume conductor co
sists of one compartment which is known to be a suffici
approximation for themagnetic forward calculation.21,22

However, generalization of the presented method to m
compartments is straightforward and will be briefly d
cussed later. For one compartment the magnetic field ca
expressed as a surface integral by means of Green’s theo3

B~r 8!5
m0s

4p E
]C

dS3
r2r 8

ur2r 8u3
V~r !1Binf~r 8!, ~4!

whereBinf is the magnetic field resulting from the prima
part of the current density alone andV is the electric poten-
tial on the surface of volume conductor.
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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In order to find an approximate analytical solution w
have to analyticallydefinethe surface.19,20 We assume that a
function f exists such that the surface is given by the ima
of a functionG:@0,p#3@0,2p#→R3 with

G~Q,F!5F r ~Q,F!sinQ cosF

r ~Q,F!sinQ sinF

r ~Q,F!cosQ
G ~5!

and

r ~Q,F!5R1 f ~Q,F!. ~6!

R is the unperturbed, constant radius of the spherical
proximation of the real volume conductor. For this para
eterization of the realistic volume conductor the integ
measuredS can be explicitly expressed as19

dS5dQdFr sinQS reR2
] f

]Q
eQ2

1

sinQ

] f

]F
eFD . ~7!

Here we expandf in the basis of spherical harmonics u
to orderP

f ~Q,F!5 (
p50

P

(
q52p

p

bpqYp,q~Q,F! ~8!

with bp2q5bpq
! since f is real. We refer to (bpq) as the

multipole coefficients of the realistic surface which are
garded as a given input which can be derived from a s
ject’s cranial magnetic resonance imaging. For phase
normalization conventions of the spherical harmonics we
fer to Ref. 19.

If the volume conductor is sufficiently smooth we ca
expect that we only need a few terms in Eq.~8! to describe
the head shape with a high accuracy. It was found that
expansion up to orderP55 is sufficient to describe detail
that are as complicated as the neck.20 Explicit calculations
are done here up toP56. Signals of brain activity which can
be measured with high signal-to-noise ratio~and, hence,
making the consideration of a realistic volume conduc
worthwhile! basically originates from in the superficial hu
man cortex close to the upper hemisphere, and we can ex
that our expansion provides a sufficient description of
head for this case. In general, the splitting of a volume c
ductor into a sphere and a deformation is not unique. T
most convenient choice depends on the specific volume c
ductor and the region of interest — if one exists. The dep
dence of the forward calculation on this very choice will
demonstrated in Sec. IV.

B. Perturbative calculation of the magnetic field

In principle the perturbative calculation ofB(r 8) re-
quires the knowledge of the measuredS, the Green’s func-
tion and the potentialV up to thesameorder asB. However,
the calculation can be tremendously simplified if one u
the same trick as for the spherical case, i.e., we merely
culate the radial component ofB. From this component the
total magnetic field is easily found by means of integration
radial direction~yielding the magnetic scalar potential! and
finally taking the gradient. The crucial advantage is that
radial part of the measuredS does not contribute to the radia
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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component ofB, but the nonradial part is of orderf. Thus, an
nth order calculation of

Br 8[er 8•B ~9!

requires only the Green’s function andV up to ordern21.
he

e
ic
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Especially, to calculateB up to first order we only need to
know the electric potential for a spherically symmetric vo
ume conductor.

For the nonspherical part of the radial component ofB
we explicitly get
Br 82Br 8
inf

5
m0s

4p
er 8E dQdF sinQr S 2

] f

]Q
eQ2

1

sinQ

] f

]F
eFD3

r

ur2r 8u3
V~Q,F!

5
m0s

4p
er 8E dQdF sinQ r S ] f

]Q
eF2

1

sinQ

] f

]F
eQD r

ur2r 8u3
V~Q,F!

5
m0s

4p E dQdF sinQ r H ] f

]QF rsinQ8 sin~F82F!

ur2r 8u3
G

2
1

sinQ

] f

]FF r ~cosQ sinQ8 cos~F82F!2cosQ8sinQ!

ur2r 8u3 G J V~Q,F!. ~10!
r
q.

e

With the abbreviations g5sinQ sinQ8 cos(F82F)
1cosQ8 cosQ and

G5G~r ,r 8!5
1

ur2r 8u
~11!

we express the terms in curly brackets as

r sinQ8 sin~F82F!

ur2r 8u3
5

1

r 8 sinQ

]G

]F
1

1

r 8 sinQ

r 2r 8g

ur2r 8u3
] f

]F

~12!

and

r @cosQ sinQ8 cos~F82F!2cosQ8 sinQ#

ur2r 8u3

5
1

r 8

]G

]Q
1

1

r 8

r 2r 8g

ur2r 8u3
] f

]Q
. ~13!

Inserting this into Eq.~10! we finally arrive at the re-
markably simple result

Br 85
m0s

4pr 8
E dQdFr S ]G

]F

] f

]Q
2

]G

]Q

] f

]F DV1Br 8
inf . ~14!

Note that if both the volume conductor and the source~and,
hence,V) are axially symmetric~independent ofF) we ar-
rive after partial integration at the well known result that t
magnetic field vanishes outside the volume conductor.

The crucial point is that there is no term of orderO( f 0)
in Eq. ~14!, and hence, for a first order approximation w
may set V to be the potential on the surface of a spher
volume conductor (V→V0) and evaluateG on the spherical
surface (G→G0) resulting in
al

Br 85
m0sR

4pr 8
E dQdFS ]G0

]F

] f

]Q
2

]G0

]Q

] f

]F DV0

1O~ f 2!1Br 8
inf . ~15!

C. Explicit computation of the magnetic field

To explicitly evaluate the magnetic field for a dipola
source we express all functions in the integral kernel of E
~15! in series of spherical harmonics. Whilef is already for-
mally given in Eq.~8! andG0 is well known to be

G0~r 8,r !5
1

ur2r 8u
5 (

n50

`

(
m52n

n
4p

2n11

Rn

r 8n11

3
Yn,m* ~Q,F!Yn,m~Q8,F8!

Nnm
2

~16!

with

E dQdF sinQYn,m* ~Q,F!Yn,m~Q8,F8!

5
4p

2n11

~n1umu!!
~n2umu!!

5:Nnm
2 ~17!

we recall that for a unit charge monopole placed atr0 the
potential on a spherical surface reads19,23

Vmon
0 ~r ,r0!5

1

s (
k51

`

(
l 52k

k
1

k

Yk,l~Q,F!Yk,l* ~Q0 ,F0!

Nkl
2

r 0
k

Rk11
.

~18!

The potential for a current dipole with momentJ can be
found from Eq.~18! upon differentiation with respect to th
origin.19,24 This leads to
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Vdip
0 ~Q,F!5

1

s (
kl

aklYk,l~Q,F! ~19!

with

akl5J¹0

1

k

r 0
kYk,l* ~Q0 ,F0!

Rk11Nkl
2

, ~20!

where¹0 denotes the gradient with respect tor0 .
Insertion ofG0, V0, andf into Eq. ~15! leads to a solu-

tion for the radial component of the magnetic field. SinceB
is curl free ~in the quasistatic approximation! the complete
magnetic field can be found from first calculating the sca
magnetic potentialF and then taking its gradient

B5¹F5¹ È r

Br . ~21!

After expandingBr in a series of spherical harmonic
integration along the radial direction is straightforward en
ing up with the final solution

B~r 8!5
m0

4p (
n51

N

(
m52n

n

(
p51

P

(
q52p

p

(
k51

N

(
l 52k

k

¹8

3
Yn,m

r 8n11

Rn11bpqCnmpqklakl

~2n11!~n11!
1Bsph~r 8! ~22!

with bpq and akl defined in Eq.~8! and Eq.~20!, respec-
tively, and

Cnmpqkl[E
0

p

dQE
0

2p

dF
1

Nnm
2

3S ]Yn,m*

]Q

]Yp,q

]F
2

]Yn,m*

]F

]Yp,q

]Q DYk,l , ~23!

whereBsph denotes the solution for a spherical volume co
ductor. Here, we have already limited the sums to finiteN
andP as will be the case in a computer implementation. T
proper choices will be discussed in the next section. N
that the minus sign arising from integration of 1/r 8n12 in Eq.
~21! has been put into the order of derivatives in Eq.~23!.

At first sight it seems that evaluation of the sum in E
~23! over six indices is extremely time consuming, making
useless for practical applications. This is indeed not the c
if, as in BEM, the computation is split into an initializatio
step which is independent of the source and a final step
each source.

For the initialization note that theCnmpqkl in Eq. ~23! are
fixed numbers which need to be computed only once and
be stored~up to given order!. Alternatively one may generat
formulas~e.g., with Maple! which compute the nonvanishin
elements for givenp,q as a function ofk and l. The latter is
possible because theCnmpqkl are sparse: the nonvanishin
elements are constrained by

m5q1 l ~24!

n5k12 j with 2upu11<2 j <upu21. ~25!

TheCnmpqkl may be regarded as coupling constants betw
different spherical harmonics of the sourceV0 and the solu-
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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tion B. For p50 these couplings vanish; forp51 the cou-
plings correspond to a diagonal matrix, and for generalp the
‘‘coupling matrix’’ has p side/main diagonals.

One very important consequence is that for finitep the
convergence is controlled byr 0 /r 8, the ratio of the senso
radius and the source radius, since, apart from constant
tors, the radius of the unperturbed sphere R occurring in
factors (R/r 8)n in Eq. ~22! and (r 0 /R)k contained in the
source coefficientakl cancels out. Now, in a practical appl
cation r 0 /r 8 is always sufficiently smaller than 1: magnet
sensors cannot be put directly on the head surface and c
cal current sources reside at least 15 mm below the skin
boundary; hence, convergence will be excellent as is sho
in the next section.

Coming back to the calculation ofB the initialization
consists of two steps.

~1! For the surface coefficientsbpq which parameterizes the
perturbation around the sphere with radiusR calculate

C̃nmkl[
Rn11

~2n11!~n11! (pq
bpqCnmpqkl. ~26!

~2! For each sensor at positionr i which measuresB in di-
rectionni compute

Cnm
i [

m0

4p
ni¹

Yn,m

r i
n11

~27!

and

Fkl
i [(

nm
Cnm

i C̃nmkl . ~28!

The vectorsF i are the input for the explicit calculation
of B for each source. We point out again that they have to
calculated only once for each volume conductor and sen
configuration. They correspond to the ‘‘lead field’’ of thei th
sensor mapping the surface potential in the basis of sphe
harmonics to the magnetic field.

Now, for the calculation ofBi , the magnetic field in the
ith sensor, we have to computeakl according to Eq.~20! for
each source and finally arrive at

Bi5(
kl

Fkl
i akl1Bi

sph. ~29!

Remarks: For notational simplicity we formulated the abo
algorithm using complex numbers. However, in practice o
can save computation time if one splits the terms into r
and imaginary parts and makes use of the fact thatf, V0 and
G0 are all real.

In the electric case we ended up with sums over a sin
index by making use of a coordinate transformation for ea
source rotating it to thez axis.19 However, for largep this
gets extremely complicated, and cannot be recommen
Furthermore, the convergence properties are far better fo
magnetic case than for the electric case. The computatio
the double sums is sufficiently fast, as shown in the n
section.

The calculation of the magnetic field requires the eva
ation of spherical harmonics and their derivatives. For
former we use standard algorithms,25 and for the latter we
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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derived simple relations which reduce this problem to
former ~see the Appendix!.

III. PROPERTIES OF THE FORWARD CALCULATION

A. Convergence

The final perturbative solution for the magnetic field i
duced by a current dipole was given in Eq.~22! in terms of a
sum of spherical harmonics. Practical applicability of th
formula depends on its convergence behavior. Similar to
electric case the series converges exponentially withr 0 /r 8
wherer 0 is the radius of the source andr 8 is the radius of the
measuring point. In contrast to the latter, magnetic sens
being inside a dewar filled with liquid helium, cannot b
placed directly on the skin. In practice this means that e
for very superficial sourcesr 0 /r 8 is rarely larger than 0.5,
and one can expect the series to converge very fast.

Here, some care has to be taken since the ‘‘matrix’’ E
~23! contains off-diagonals extremely increasing the requi
number of terms. In general, for a surface parameteriza
with spherical harmonics up to orderP corresponding to
(P11)2 parameters a ‘‘solution spherical harmonic’’ of o
dern can couple~at most! to a ‘‘source spherical harmonic’
of ordern6(P21). Hence, the required order of the expa
sion of the solution may increase byP21 compared to the
naive expectation. At this point it is obvious that the spar
ness of the coupling matrices in Eq.~26! is essential since
otherwise the relevant expansion parameters would h
been bothr 0 /R and R/r 8 with R being the radius of the
unperturbed volume conductor.

In our computer implementation we go up to orderP
56 corresponding to 49 parameters to describe the real
volume conductor. In this case calculating the sum in
~29! up toN520 is sufficient as one can see in Fig. 1, whe
we plotted

e~N![H ( i@Bi~40!2Bi~N!#2

( iBi
2~40!

J 1/2

~30!

as a function ofN, the order of spherical harmonics in E
~22!. Bi(N) denotes the perturbative magnetic field in theith

FIG. 1. Convergence: The relative difference between a magnetic field
culated up to orderN of spherical harmonics and the same field calcula
up to order 40 for a radial dipole placed on the surface (z059 cm! of a
spheroid, covered by a MEG whole head system of radiusr 8. The series
converge exponentially as;(z0 /r 8)N.
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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sensor calculated up to orderN. As a sensor configuration w
have chosen a virtual whole head system measuring the
dial component of the magnetic field equally distribut
around the whole volume conductor at radiusr 8. The source
was defined to be a radial dipole placed on thez axis at
height r 059 cm. The volume conductor corresponds to t
prolate spheroid as used in the next section and the pe
bative correction was calculated with respect to a sphere
radiusR510 cm. As one can see, for a measuring syst
with radiusr 8515 cm corresponding to a source eccentric
of r 0 /r 850.6 the magnetic correction has converged forN
520 up to 0.1%. Indeed, the chosen sensor configura
has ‘‘bad’’ convergence properties: for a planar system
height z8512 cm the ‘‘error’’ e(N) is smaller than for the
corresponding whole head system. Moreover, for a ra
dipole individual terms in the series basically cancel: thus
considered case is exceptionally difficult.

For more accurate descriptions of the volume conduc
corresponding to larger values ofP a larger value ofN is
eventually needed. However, choosing, e.g.,N530 would
still result in very fast forward calculations. Furthermore, t
large spatial frequencies~largep) of the surface deformation
have in general a small amplitude, and hence, for these
efficients a relatively less accurate forward calculation is s
ficient.

B. Dependence on spatial frequencies

For the algorithm to compute the external magnetic fi
the order of spherical harmonics to parametrize the reali
surface is limited by an in principle arbitrary though fini
numberP. The largerP is chosen the higher is the compu
tational cost. However, for a square integrable deformatiof
~any continuous deformation is square integrable! the se-
quence of surface coefficients, if written in the basis of n
malized spherical harmonics, converges to zero. Moreo
for smooth deformations this convergence will be rapid.

Apart from this general considerations the quest
arises of how large is the impact of individual frequen
components on the external field. In fact, if the surface
tential is relatively smooth and the sensor configuration
not too close to the surface, contributions from higher or
frequency surface deformations will basically cancel out, i
the mapping of the surface deformations to the magn
field effectively acts as a spatial low pass filter.

To show this we have again used a spherical whole h
system, as described in the last subsection, with radiusr 8. To
the spherical volume conductor of radiusR510 cm we
added ‘‘pure’’ normalized multipolar deformations

bpq5dp0pdq0qNpq ~31!

resulting in a correction to the magnetic fieldBp0q0

i in the ith

sensor. Now for each orderp0 we calculated the mean

g~p0![
1

2p011 (
q052p0

p0 F(
i

~Bp0q0

i !2G1/2

. ~32!

As a source we have chosen a radial dipole placed on
z-axis at heightz0 . In Fig. 2 we showg(p0) for three values
of r 8 and for various dipole depths. We see a clear expon

l-
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 2. The average contribution of different orders
the surface parameterization to the external magne
field for whole head systems of radiusr 8 and for vari-
ous dipole locations (z0).
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tial decay of the norms of the magnetic fields. This expon
tial decay is the larger the farer the system is from the v
ume conductor. For more superficial sources this deca
less pronounced eventually resulting in an essentially c
stantg(p0) for sources placed on the surface of the volu
conductor (z05R510 cm!.

In practice the distance from the dewar to the inn
boundary of the skull is always large whereas the source
in general be quite close to this boundary. To conclude
this issue, the assumption of smoothness of the volume
ductor is only necessary if superficial sources are conside
for deep sources high frequency oscillations of the volu
conductor can always be neglected.

C. Computational cost

The computation of the magnetic field consists of th
steps:~a! the parameterization of a given surface in a ser
of spherical harmonics,~b! the initialization for given surface
parameters and sensor configuration, and~c! the actual cal-
culation for each source. Computation times for each step
given for a HP 9000~B180L! with 180 MHz.

To describe a surface by spherical harmonics we ass
that it is given as a set ofNs points. Here, we first fit a spher
to these points which is a simple nonlinear fit with 4 para
eters: the cost is proportional toNs . Then we keep these
parameters fixed and fit the deviation up to orderP with
(P11)2 parameters, which is a linear fit: the cost is prop
tional to (P11)4Ns . Since theNs points of the surface are
in general not equally distributed as a function of surfa
angles we do not make use of the orthogonality of the sph
cal harmonics. ForP56 andNs51600, as was used for th
prolate spheroid in the next section, this whole fit takes ab
1.2 s. The splitting of the nonlinear sphere fit and the lin
deviation fit speeds up~and simplifies! the calculation. How-
ever, we want to emphasize that this rather follows from
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nature of perturbation theory: the unperturbed, spherical
proximation should be as accurate as possible in orde
obtain a small correction.

For the initialization we first construct the matrixC̃ ac-
cording to Eq.~26!. For eachp,q and going up to orderN
both in the expansion of the source and the solution requ
the calculation of;pN2 matrix elements, and hence for (P
11)2 different values ofp,q the total cost increases a
P3N2. For N520 andP56 this takes about 1 s. Now, fo
each sensorC̃ has to be applied onCnm

i @see Eq.~28!#. Since
C̃ has ;P2 off-diagonals the total cost is proportional t
P2N2Nc with Nc being the number of channels. ForNc

550, P56, andN520 this takes about 1 s resulting in a
total cost of 2 s for the initialization.

Finally, in addition to the spherical solution we have
constructakl according to Eq.~20! and calculate the ‘‘scala
product’’ with Fkl

i for each sensor to obtain the magne
field @see Eq.~29!#. For Nc550 channels a single forwar
calculation takes about 14 ms.

Both the initialization and the final computation of th
magnetic field involve the evaluation of spherical harmon
and their derivatives. We would like to note that, with th
help of the rules in the Appendix, the respective compu
tional cost can be neglected.

The required disk space is considerably low beca
relatively small sparse matrices are involved. The coupl
matrix C̃ in Eq. ~26! has only;P2N2 nonvanishing ele-
ments and is constructed from;P3N2 nonvanishing fixed
numbersCnmpqkl. Additionally, the ‘‘lead fields’’ Fkl

i re-
quire the storage of;NcN

2 numbers which is in genera
negligible.

IV. COMPARISON WITH THE PROLATE SPHEROID

As an illustrative example we will calculate the pertu
bative solution for the prolate spheroid, which roughly co
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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responds to the form of a realistic head volume conduc
We strongly emphasize again that the perturbation the
can be applied to arbitrary volume conductors as long as
are sufficiently smooth and as long as the deviation from
spherical fit is not too large. However, the spheroid is
only nonspherical volume conductor for which an exact
lution exists, thus making it possible to evaluate the p
posed approximate solution. Note, that the halfspace ca
regarded as a special case of the spherical volu
conductor.3 Moreover, one cannot perturb around the ha
space within the proposed framework because the eccen
ity of any source is 1.

The prolate spheroid is an egg-shaped surface define
the image of the function

G~Q,F!5S 2j cosQ

Aj22c2sinQsinF

Aj22c2sinQ cosF
D , ~33!

wherej andc are fixed numbers. Here, we rotated the v
ume conductor as compared to the standard definition by
around they axis in order to match the convention that thez
coordinate corresponds to vertical direction.

Here we choosej512 cm andc5A65 cm correspond-
ing to l 59 cm (12 cm! for the short~long! half axis of the
spheroid. These values roughly correspond to the typical
tance ear to ear and front to back for a realistic case. T
spheroid rather fits the skin than the inner skull of a typi
head. However, relative errors do not depend on equal s
transformations of source, volume conductor, and sen
configuration. Moreover, the present choice is rather pe
mistic in the sense that superficial sources have larger ec
tricities than in typical real cases.

To use perturbation theory, the spheroid is approxima
by a sphere plus a correction. This description is not uniq
A reasonable choice is to use a fit both for the sphere and
the correction. However, it can be better to choose the sp
such that it approximates the realistic volume conductor i
region of interest: especially, for realistic cases, the sph
should rather fit the upper hemisphere if one is intereste
cortical sources. Here, we discuss only two out of an infin
number of possibilities:~a! the sphere is chosen as a fit r
sulting in a radius ofR510 cm and~b! the sphere is defined
to be the largest inner sphere having a radius ofR59 cm in
order to be accurate on ‘‘top’’ of the volume conductor.

For both spheres the correction according to Eqs.~6! and
~8! is defined as a least squares fit toNs51600 surface
points. The spheroid and the two spheres are shown in Fi
The spheres plus corrections up to orderP56 fit the spher-
oid with an accuracy of 99.99%: they are practically ind
tinguishable from the spheroid and are, hence, omitted in
figure. As measuring device we choose in this section a
nar array of magnetometers at heightz512 cm. For definite-
ness, dipole moments are set to 20 nAm throughout this
tion.

To calculate the solutions of the prolate spheroid we
our arbitrary-precision implementation26 of the Cuffin/Cohen
series expansion.10 The first 60 terms of the expansion we
considered for the calculations. To make sure that 60 te
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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are sufficient for a satisfying convergence, we compared
results to the results obtained with a considerable hig
number of terms, namely 100. The relative differences of
solutions for 60 and 100 terms were less than 1024 for all
sources used in this article, which is sufficient to consider
solutions as ‘‘exact’’ for the comparisons to the differe
approximating solutions. The cutoff error is highest for t
sources closest to the border of the volume conductorz0

5689 mm! and decreases rapidly with increasing distan
from the border, e.g., foruz0u<80 mm the relative cutoff
error with 60 terms is only about 1026.

Let us first show two examples. In Fig. 4 we show thez
components of the magnetic fields corresponding to a dip
placed on thez axis at heightz054.5 cm pointing intox
direction. The perturbative solution was calculated with
spect to the fitted sphere (R510 cm!. The spherical solution
~upper, middle! deviates from the exact~upper, left! by 14%
while the perturbative solution~upper, right! is 20 times
more accurate having an error of only 0.7%. In the low
panel we show the respective difference fields. The pertu
tive correction~lower, middle! is in very good agreement to
the ideal correction~lower, left!, the exact field minus the
spherical solution: the difference of the latter~lower, right! is
about 20 times smaller than the ideal correction.

An interesting second example can be seen in Fig
Here the dipole is located atz0521 cm and points intoy
direction — the most difficult case for a nonsuperficial d
pole. The perturbative solution was calculated with the in
sphere. While the spherical approximation breaks do
completely, the perturbative solution correctly represents
complicated structure of the exact solution.

In the following we want to discuss in more detail th
dependence of the accuracy of the forward calculations
the source parameters. We first restrict ourselves to
spherical and the perturbative solutions; the performance
BEM, which was also studied for comparison, will be di
cussed separately.

FIG. 3. The prolate spheroid and two spherical approximations. The
proximation of the spheroid by spherical harmonics up to orderP56 is
practically exact and not included in the figure. The dipole location a
orientation are varied in the analysis — the plot shows a typical examp
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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FIG. 4. Calcutated fields for a dipole
located at (x0 ,y0 ,z0)5(0,0,4.5) cm
pointing in x direction. Upper panel:
exact solution~left!, spherical approxi-
mation~middle!, perturbative approxi-
mation~right!. Lower panel: ideal cor-
rection to the sphere~left!, calculated
correction ~middle!, difference ~ideal
calculated! of the corrections~right!.
th

tio

ed

he
he
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In Fig. 6 this accuracy, defined as

ea5F ( i~Bexact
i 2Bapprox

i !2

( i~Bexact
i !2 G 1/2

, ~34!

where a5x,y,z denotes the measured component of
magnetic field, is shown as a function of dipole depthz0 .
The accuracy was calculated for the spherical approxima
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
e
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and for the perturbative solutions with respect to a fitt
sphere of radiusR510 cm~‘‘pert. a!’’ and to an inner sphere
of radiusR59 cm ~‘‘pert. b!.’’ Apart from the central dipole
pointing inz direction the inner sphere works better than t
fitted sphere. Especially, if a ‘‘radial’’ dipole approaches t
surface atz059 cm the fitted sphere may result in larg
relative errors. The reason for this is that the exact solut
FIG. 5. Same as Fig. 4 for a dipole
located at (x0 ,y0 ,z0)5(0,0,21) cm
pointing in y direction.
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FIG. 6. Upper panel: Error of the forward calculatio
for various approximations of the forward calculatio
as a function of dipole height for thez component of the
magnetic field. Lower panel: Ratio of the correspondi
error of the x component and thez component. The
terms pert. a and pert. b refer to the perturbative exp
sions around a sphere of radiusR510 cm andR59
cm, respectively.
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converges to zero in this limit: if the perturbative solution
calculated with a sphere of correct radius~at the considered
location! it has this same property and hence the error st
finite. However, also for other dipole directions the inn
sphere is more appropriate for superficial sources as was
purpose of this very choice.

In the center of the volume conductor the relative er
eventually increases as can be seen for a dipole pointingy
direction. The basic reason is that tangential dipoles get m
radial when approaching the center and, hence, the e
solution decreases. Remarkably, this increase cannot be
for the dipole inx direction: the exact and the perturbativ
solution converge to zero due to axial symmetry resulting
a finite error. We note, that for this case the point atz050
was excluded in the figure since for the accuracy one divi
zero by zero.

Quite generally, perturbation theory improves the sph
cal approximation by about a factor 10–20 with exceptio
cases in both directions: while one should be careful w
radial dipoles approaching the surface, the improvement
to perturbative corrections can be much more dramatic
intermediate dipoles eventually giving rise to an error d
crease by a factor 100.

Finally, we want to compare the results for the analyti
approximation with the corresponding numerical soluti
given by BEM using the program ‘‘Curry’’~Philips!. For the
latter we used a surface parameterization consisting of 2
triangles with a typical side length of about 8 mm. In fa
we used a given liquor triangularization and transformed
triangles and normals to parametrize the spheroid.

As can be seen from Fig. 6 the relative accuracy of BE
depends very much on the location and the direction of
dipole. Generally, BEM becomes poor in the vicinity of th
surface of the volume conductor: for thez component of the
magnetic field this increase of the error starts at about 1
distance (' triangle length! from the surface and become
unacceptable at half the triangle length in agreement w
other findings.12

BEM works satisfactory for nonsuperficial sources ap
from the case of a central dipole pointing inx direction.
Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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However, this extreme breakdown of performance is ba
cally caused by the vanishing of the true solution. Pertur
tion theory based on the inner sphere works always be
than BEM while the corresponding solution for the fitte
sphere is eventually worse in regions of good performanc
BEM.

The breakdown of BEM in the vicinity of the surface
more pronounced if a nonvertical field component is studi
From the lower panel of Fig. 6 it can be seen that analyti
solutions, being exactly curl-free, behave similar for all fie
components. In contrast, a large increase of the error of B
is observed at the boundaries: the contribution of the volu
current arises from relatively few, basically vertical secon
ary currents~i.e., triangles! which induce a basically nonver
tical magnetic field. If thex component of the magnetic fiel
is studied then also the ‘‘bad’’ perturbative solution~fitted
sphere! has always smaller errors than BEM for sourc
closer than 3 cm to the surface, and even the spherical s
tion is better than BEM for sources closer than 1 cm.

V. CONCLUSION

We presented the theory to compute an analytical
proximation of the external magnetic field due to a sou
inside a realistic volume conductor. We assumed that
volume conductor can be described by a sphere plus a s
correction. It was shown that a first order Taylor expans
of the magnetic field with respect to this correction can
given without referring to the corresponding electric so
tion. The central result of the proposed theory, given in E
~14!, is a remarkably simple integral for the calculation
the radial component of the magnetic field, from which
other components follow resulting in an exactly curl-free a
proximation.

An explicit computer implementation of the theory ca
only be done for a finite parameterization of the realis
volume conductor. Then, perturbation theory leads to a c
pling of input, the surface potential calculated in the sphe
cal approximation, and output, the magnetic field at so
specific location, consisting of a sparse and diagonally do
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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nant matrix. The latter property ensures that the final so
tion, which is written as a series of spherical harmoni
converges as;(r 0 /r 8)n where r 0 (r 8) denotes the radia
coordinate of the source~sensor!. In practice, even for super
ficial sourcesr 0 /r 8 is substantially smaller than 1 resultin
in very fast algorithms for both the initialization and th
actual forward calculation.

We presented a detailed analysis of the performanc
the proposed approximation by comparing it to the analyt
solution for a~prolate! spheroid, the only nontrivial volume
conductor where an exact solution is known. With the lo
axis being 33% larger than the two short axes the assu
deformation of the sphere is rather an overestimate of r
istic deformations. Quite generally we found that the pert
bative solution improves the spherical approximation by
factor 10–20 with exceptions in both directions. Especia
we found no problems with very superficial tangent
sources; radial sources eventually show up a divergingrela-
tive error because the exact solution vanishes for sou
placed on the surface giving rise to an intrinsically singu
performance measure.

For comparison we also calculated the correspond
BEM solutions. We found BEM to be satisfactory for de
sources with an error being in the same order as the pe
bative approach. Details, however, depend on the dipole
rection and the location and on the specific realization of
perturbative approximation. BEM eventually breaks do
for superficial sources. While the corresponding increase
the error occurs only for sources very close to the surfa
('5 mm! if an essentially radial~here: vertical! component
of the magnetic field is studied, the tangential~here: horizon-
tal! field components show a breakdown of the performa
much earlier ('2 cm!. This is in sharp contrast to analytica
methods which lead to exactly curl-free solutions.

We demonstrated the performance of a first order per
bation theory for a single surface parametrized by 49 par
eters. Generalizations can be done with respect to all asp
especially in conjunction with the corresponding elect
solution19 the theoretical basis is given, and the compu
tional cost, being so far extremely low, can be expected to
within acceptable limits.
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APPENDIX

Here, we present some very useful relations to calcu
derivatives of spherical harmonics, which are not known
far. Phase and normalization conventions are as in Ref.
Let us define
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Fn,m~r ![r nYn,m~Q,F! ~A1!

then from standard recursion relations it follows that

S ]

]x
1 i

]

]yDFn,m52Fn21,m11 ;m>0, ~A2!

S ]

]x
2 i

]

]yDFn,m5~n1m21!~n1m!Fn21,m21 ;m.0,

~A3!

]

]z
Fn,m5~n1m!Fn21,m ;m>0. ~A4!

The corresponding rules form,0 in Eq. ~A2! follow from
complex conjugation of Eq.~A3! and similarly for the other
rules. Calculation of¹Fnm corresponds to simple combina
tions of Eqs.~A2!–~A4!. Here, we have to calculate the gr
dients ofr nYn,m andYn,m /r n11. The latter can be calculate
from Eqs.~A2!–~A4! by writing Yn,m /r n115Fn,m /r 2n11.
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