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We investigate the structural properties of rigid linear polyelectrolytes in dilute and semidilute
solutions using an integral equation theory. The Polymer Reference Interaction Site Model together
with the Reference Laria Wu Chandler Closure is solved numerically taking the counterions into
account explicitly. The counterions and the polymer chains, modeled as linearly connected, charged
hard spheres, interact through an unscreened Coulomb potential. The pair correlation functions
between the monomers of different chains, the counterions, and the monomers and counterions,
respectively, are calculated for various densities and Bjerrum lengths. Based upon these quantities,
the effective potential among the monomers and the counterions, respectively, is extracted. In
particular, a critical Bjerrum length is determined, which separates the regime of a repulsive
interaction between the counterions from the regime of an attractive interaction transmitted by the
polymer chains. ©2001 American Institute of Physic§DOI: 10.1063/1.1370075

I. INTRODUCTION effects caused by the counterions, introduces more than one
new length scale in the problem, which means that short
The study of polyelectrolytes, i.e., charged polymers distange(hard cor¢ and medium to long range interactions are
solved in a polar solvent and in the presence of dissociategimultaneously present. This coupling of different length
counterions, has been an outstanding problem in polymescales leads to a severe influence of the local chain properties
science for several decades, both from an experimental as the properties of the whole systéf?2*
well as a theoretical point of view> The importance of this Computer simulations of polyelectrolyte solutions are
class of polymers is quite obvious considering that the twosery time consuming, since the adequate treatment of the
perhaps best known biopolymers, namely DNA and RNA,ong range Coulomb potential requires techniques like the
are polyelectrolytes. The technical application of syntheticEwald summatio?>=28 Therefore, computer simulations are
polyelectrolytes, such as sulfonated polystyrene or polyoften limited to short chains and/or dilute solutions or even
acrylic acid, are very widespread, ranging from water purifi-single chain$®-3* Nevertheless, computer simulations can
cation through extraction of ions to stabilization of gels andgive deeper insight to polyelectrolyte systems, e.g., the coun-
micelles and even to the use as an absorbent material f@grion distribution or chain conformatioris.
diapers'~>° Despite the theoretical and experimental efforts  Another theoretical approach to polyelectrolyte solutions
many properties of polyelectrolytes are, in comparison tqs the Polymer Reference Interaction Site Mod@RISM)
neutral polymers, still poorly understodd:*Experiments on  theory. The PRISM theory, which has been very successfully
polyelectrolyte solutions using different methods often leadypplied to neutral polymer§;3° was first introduced by
to controversial results.Furthermore, experimental results cyrro and SchweizeP The first applications of the PRISM
on single polyelectrolyte chains are still lacking due to theiheory to polyelectrolyte solutions were based on a very
immense problems caused by trace impurities and very l0Wmple one-component model, which treated the counterions
scattering intensities when measuring dilute solutidi¥s. \ithin the Debye—Hakel approximatiorf®=#2 This simple
Therefore, scattering experiments and measurements of thgode| proved to be very useful to obtain the thermodynamic
radius of gyration are almost always performed in the semizng structural properties. In particular, the scaling behavior
dilute regime'*~ _ _ _ _ _of the first peak in the polymer structure factor could be
From the theoretical point of view the main problem in gypiained by that approach for a wide range of parameters
understanding polyelectrolyte solutions is the long rangeych as chain length, density, and Bjerrum length. However,
Coulomb interaction. Renormalization group theories andpis model is lacking some major features required for a
scaling ideas, which have g{oved to be very successful foggmplete understanding of polyelectrolyte solutions. In the
neutral polymer squUon%f’,‘ are now difficult to apply.  one.component model the distribution of the counterions is
The long range Coulomb interaction, together with screening,ays implicitly assumed to be spherically symmetric. This
approximation may be valid for weakly charged systems, but
dElectronic mail: thomas.hofmann@physik.uni-ulm.de is clearly wrong for strong Coulomb interactions, when
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counterion condensation is relevant. In the latter case soniehe PRISM theory as well as the Ornstein—Zernike equation

or even all counterions are bound to the chain due to theonnects the total correlation functibitr), which is related

strong electrostatic coupling between the monomers antb the well known pair correlation functiog(r) via h=g

counterions and only those counterions not condensed on thel, with the direct correlation functioo(r) and, in the case

chain may be described in the Debye-ekel approxima- of polymers with intramolecular correlation functions, the

tion. Hence, counterion condensation cannot be described intramolecular structure factor. For the primitive model stud-

the one-component model. The growing interest in recented in this paper three different correlation functions are rel-

years in the distribution of the counterions around the chairevant: the monomer—monomer, the counterion—counterion,

and especially counterion condensation requires a more seand the monomer—counterion correlation function. The nu-

phisticated model. Such a model is the so called primitivemerical treatment of the PRISM equations faces, especially

model#® Here the counterions are taken into account explicfor long polymer chains, a severe problem. In the original

itly and all ionic species, i.e., the monomers and counteriondprmulation of the PRISM equation all monomers of the

interact via hard core repulsion and an unscreened Coulomthain are treated explicitly, which means that a vast number

potential. Recent studies of polyelectrolyte systénf€  of coupled equations has to be solved. This problem can be

based on this model have mainly concentrated on the variasolved if we neglect chain end effects and hence consider all

tion of the density of the solution. monomers on the chain as equivalent. In this approximation
Various criteria are used to characterize counterion conthe N intermolecular correlation functiorg!,,,, whereN is

densation. Since the counterions are condensed on a polymtiie number of monomers of a chain anglare the indices of

chain a measure of the amount of condensed counterions ike individual monomers on different chains, reduce to a

obtained by counting their number within a certain distancesingle intermolecular correlation functiog,,,, between

around a polymefor monomey. monomers. Thus, the PRISM equations can conveniently be
Alternatively, the electrostatic binding energy might be written in Fourier space as

used to determine a distance within which the ions are de- w(K)

clared to be condensed. Both of these methods have their h_ (k)= (1—peCod K) —A(K)),

shortcomings as discussed in Ref. 48 for a rod-like polymer. A(K)pm

Instead, in Refs. 48 and 49 an inflection point criterion is 1

suggested to define the critical Bjerrum length and the h.(k)= A(T)(1—pmw(k)cmm(k)—A(k)),

amount of condensed ions. However, to apply this idea to a Pe

dilute or semidilute systems is rather difficult, since the cri- w(k)

terion requires the association of a particular ion with a par-  hmd k) = Wcmc(k),

ticular polymer(at least partially. It is this step which causes

major difficulties in a three dimensional systéfrtence, it A(K)=1—pcCec(K) = pm@(K) Crm(K) + pmpc@m(K)
is not obvious yet, whether the criterion is useful at all. )
In this paper, we address the structural properties of X (Cmm(K)Ced K) = Cird(K)),

polyelectrolyte solutions for various Bjerrum lengths, chainwherep,, andp, are the monomer and counterion densities,
lengths, and densities. In particular, we demonstrate that thespectively, ana (k) denotes the single chain intramolecu-
counterion—counterion pair correlation function can be useqbr structure factor. For symmetry reasons the monomer—
to define a critical Bjerrum length, which separates the retounterion Gmc) and Counterion_monomegl(m) correlation
gime of a repulsive interaction between the counterions anglinctions are equivalent. The chain model itself enters solely
an attractive regime transmitted via the polymer chains.  through the intramolecular structure factor. It can easily be
The paper is organized as follows. In Sec. Il the chaincalculated for a fixed chain conformation or has to be deter-
model and the basic features of the PRISM theory are demined in a self-consistent manner if conformational changes
scribed. In Sec. Il results for the correlation functions arepf 3 chain have to be taken into account. Once the correlation

presented. In Sec. IV we calculate the effective potential befunctions are known, the structure factors of the solution can
tween counterions and between monomers, respectively. Ife calculated in a straightforward manner:

Sec. V we focus on the counterion condensation and present
the criteria for the critical Bjerrum length above which coun-  Smm(K) = @(K) + prhimm(k),
terion condensation is expected. Finally, Sec. VI summarizes SodK) =1+ pched k),
our results.
Snd K)=pmhmd k).

II. PRISM AND MODEL The PRISM equations can be solved, if additional equations
are available which connect the correlation functions with
the intermolecular pair potentials. These so called closure
The PRISM theory is a liquid state theory based onrelations are given exactly for hard core systemsgify)
modified Ornstein—Zernike integral equatiolsBy taking =0 for r<o, whereo is the diameter of the hard sphere.
the connectivity of the monomers of a chain molecule intoUnfortunately, no exact closure relation exists fof o and
account, the RISM theory, first proposed by Chandler an@pproximations are required. Many such closures have been
Andersen! for treating solutions of diatomic molecules, was proposed in the literature during the last decaié8 They
extended to the PRISM theory by Curro and Schweizer. can be divided roughly into two groups: The atomic closures,

A. PRISM
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such as Percus—YevidlPY), hypernetted chain, and mean : : : : : : :
spherical approximation are based on the theory of simple, T
atomic liquids>?~>*whereas the molecular closures, such as
reference molecular hypernetted chain, Laria Wu Chandler 0.8 | .
(LWC), or reference Laria Wu ChandI¢RLWC), take the
connectivity of the monomers into accodt® It has been £ g | -
shown that the RLWC closure is a valid closure for polyelec- E lg/o
trolyte systemé4? The RLWC closure is given by 2 oal 01—
wi(r)*cij(r*wj(r) o ?:g -
= 0;(1)* Co iy (1)* @; (1) = @y (1)* Buii (1) * wj(r) + by (r) ' 2
2.3 -
- r 0 - 1 1
_h"'i"(r)_'”(gil,Ji;((r)))' hetmet LS B S R
where the index O denotes reference functions obtained for & 1F (b) .
pure hard core system for the same densities with the PY
closure and the asterisks denotes convolution integrals. It 0.8 | .
should be noted that in our notation,,(k)=w(k) and
w.(K)=1. The set of coupled integral equations together £ ¢ L 4
with the appropriate closures is solved iteratively until con- E
vergence is achieved using a Picard iteration schérii@e o 04 L ]
convergence is usually quite fast and requires only a few '
minutes for a given set of parameters on a standard persona o2 L i
computer. '
0 L= 1 1 1 1
B. Model of the system 8 10 12 14

The polyelectrolyte chains are modeled as a collection of /o

N charged hard spheres with diametey, separated by a FIG. 1. Monomer—monomer pair correlation functigp,(r) for various
fixed distancd and chargeZ,e. Since we consider rodlike Bjerrum lengthsl . The density isy=10"2 and the chain lengths aie
chains, the spheres are arranged in a linear configuration. For0 (@ andN=280 (b).

this model no conformational changes have to be considered

as the chain remains in its rigid rod configuration for all
parameter variations. Hence, the intramolecular structure fa
tor is given by

same size as the monomers. Moreover, in our calculations
She segment lengthis equal to the hard core diamater
Instead of the density we will often use the dimensionless

o N-1 sin(jkI) packing fractiony=mpac?/6. Unfortunately, the numerical

o(k)=1+ N > (N—J)T- iteration scheme required for solving the PRISM equations
=t : does not always converge. This is especially true for highly

The counterions are also modeled as charged hard spherelsarged systems and depends on density. The usage of other
with diametero. and a charge oZ.e. Charge neutrality closures leads to the same problems even at smaller Bjerrum
requires that the monomer density, and the counterion lengths. Hence the limitation of the parameter range seems to
densityp, fulfill the equationZ,p,+Z.p.=0. The influence be a consequence of the closure and not of the numerical
of the solvent is treated in a mean field manner. It is deiteration scheme. As already mentioned above, the density
scribed as a homogeneous dielectric continuum with the didependence of the relevant properties has already been dis-
electric constané. The pair interaction potential for all ionic cussed in detail in other publicatioffs:*® Therefore, we will
species is given by mainly discuss the influence of the Bjerrum and chain
s lengths on the structure of the system.
Bvii(r)zﬂvi'?c(r”zizj?; ,je{m.ch, A. Monomer—monomer correlation
wherev i'?c(r) is the hard core potential ahg= Be?/ ¢ is the Figure 1 presents the monomer—monomer pair correla-
Bjerrum length. tion function for various Bjerrum lengths ranging from very
weakly charged systems up to well above the Manning
threshold for counterion condensatidg (c=1). The pack-
ing fraction isp=10"2. Results for chain lengthd =10 (a)

The following results were obtained for systems withand N=80 (b) are presented. In contrast to the variation of
monovalent counterions, i.eZ.,=—1 and single charged the density, which has a rather large influence on the struc-
monomersZ,,= + 1. In this case charge neutrality demandsture and therefore on the monomer—monomer correlation
Pm= P, therefore we use in the following=p.. Further-  function, the variation of the Bjerrum length causes only
more we seto,=o.=o, i.e., the counterions are of the minor changes ig,,. Figure 1 shows that the contact value

IIl. CORRELATION FUNCTIONS
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FIG. 2. Monomer—counterion pair correlation functigpJr) for various FIG. 3. Counterion—counterion pair correlation functipg(r) for various
Bjerrum lengthslg . The density isp=10"2 and the chain lengths afe Bjerrum lengthslg . The density isy=10"2 and the chain lengths amé
=10 (a) andN=280 (b). =10 (a) andN=280 (b).

dmm(0) decreases with increasiig and simultaneously a lengthsN=10 (a) and N=80 (b). For smalllg g,(r) is
small peak arises at~70. Notice that all curves for the nearly constant with a value of about one forralHence, the
different values of g cross each other at the same distance local counterion density matches the bulk density almost
A detailed examination shows that this distance increasesverywhere, i.e., the counterions are distributed homoge-
with decreasing density. A similar calculation within the neously over the whole system. With increasing Bjerrum
Debye—Hukel approximation yields almost indistinguish- length an increasing peak appearsrato and a much
able results, which suggests that increadiggiot only in-  smaller peak at=2c¢. This implies that the counterions are
creases the bare repulsion among the monomers but also inew no longer homogeneously distributed, but are found
duces a screening by the counterions. Furthermore, Fig. With larger probability in the vicinity of the chains. It should
shows that the monomer—monomer pair correlation funche noted that the distance= o is the smallest possible dis-
tions of the two different chain lengths are virtually indistin- tance between monomers and counterions because of the
guishable. This has to be expected as the density is on theard core repulsion. The modulations @f,. clearly reflect
order of the overlap concentration given py=1/N2. counterion condensatioisee discussion in Sec. JVAn in-

Our calculations confirm the scaling relations of the den-eresting fact can be observed by comparing Figa) 2nd
sity dependence of the positidag,, of the first peak in the 2(b) for the two values of the chain lengths. The height of the
monomer—monomer structure fact8r>® However, inbe- peak ing,, increases with increasing monomer numbkr
tween the two known regimes we find an additional largeSince the pair correlation function is directly connected to
density range with a scaling exponent different from thethe number of counterions per monomer it is obvious from
known ones, particularly for long chains. A more detailedthis figure that for longer chains more counterions per mono-
discussion of this issue will be presented elsewhere. mer are condensed than for shorter chains at the same Bjer-

rum length.

B. Monomer—counterion correlation

C . C. Counterion—counterion correlation
The distribution of the counterions around the monomers

of a chain can be described by the monomer—counterion cor- The counterion—counterion correlation functigg pro-
relation functiong,,.. Figure 2 displaysy,,. for different  vides a deeper insight into the issue of counterion condensa-
Bjerrum lengthslg at the densityp=10"2 and the chain tion. Figure 3 displays. for different Bjerrum lengths and
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two chain lengthsN=10 (a) andN=80 (b), at the density  w(r)*cy ef(r)* w¢(r)
7»=10"2. For very lowlg g.. is constant for almost all dis- '
tances, corresponding to a homogeneous distribution of the = @c(7)* Co,ccef(F)* @c(1) — @c(N)* Bucee(1)* wc(T)
counterions. An increase of the Bjerrum length first leads to GedlT)
a decrease of the contact valgg(o) and the overall func- +hedr)— hovccyef(r)—ln(—),
tion value for short distances. A further increasegpfeverts Jo,ce.ef(F)
this behavior and a peak appears &2o. The height of the = where ¢, (¢ @and g, ¢cer denote reference functions ob-
peak increases with increasirig and its width decreases. tained for a pure one-component hard core system with the
This behavior can be explained by counterion condensatiorRY closure at the same density. It should be noted that the
For |z well below the critical Bjerrum length for counterion correlation functionsh.. and g.. are, by definition of the
condensation, an increase lgf results in stronger repulsion effective potential, the same as the correlation functions of
of the counterions. Therefore the counterions are repellethe multicomponent model. Subtracting this equation from
from each other corresponding to a decreasggefit small the RLWC closure of the multicomponent system and ex-
length scales. If the Bjerrum length is further increased thdracting the effective potential, we obtain
counterions are attragted by the polyion and. start to conden- BUceer(1) = Bued 1)+ (Cod 1)~ Coeer( 1)) — (CocedT)
sate on the chain, which must be accompanied by a decrease
of the mean separation between ions. Consequently, —Co,ccef( M) —Fedr),
sfcarts to incregse at short distances. _Hence, despite t_hfa repul- we(1)*Fod1)* c(r)= (N goef(T) —ho od 1))
sive Coulomb interaction the counterions are, for sufficiently
strong interactions, subject to an effective attractive potential Jo,cd ) )

go,cc,ef(r) '

next to a polymer chain. This aspect is discussed in detalil in
Sec. IV. The position of the peak at-20 is quite simple to For low and moderate densitidgsmaller than the overlap

explain if we consider the configuration with the lowest en'density the reference functions of the multicomponent and
ergy. The electrostatic interaction forces the condensed io e one-component model are almost equal and hence the

t_o be as close to the monomers as possible but at the_ SaMGactive potential is in good approximation given by
time as far apart as possible from each other. This is

achieved, if the counterions are located on opposite sites of BUccef)=Bvced 1)+ (CedT) ~Cecer(T))-

the chain monomers. From Fig. 3 follows that the BjerrumTherefore, the effective potential is equal to the bare poten-
length, which corresponds to the turning point in the behavtial plus a modification given by the difference in the direct
ior of g.. described above, is lower for longer chains. This iscorrelation functions of the multicomponent and one-
in agreement with the fact discussed previously that longecomponent model. Figure 4 shows the effective counterion—
chains carry more condensed ions per monomer than shorteounterion potential obtained in the way described above for

+In

chains at the same Bjerrum length. different Bjerrum lengths and two chain lengtiés= 10 (a)
andN=80 (b), at the densityy=10 2. As is obvious from
IV. EEFECTIVE POTENTIAL this figure, the effective potential is purely repulsive for low

values ofl g and can very well be approximated by the bare
The behavior of the counterion—counterion correlationCoulomb potential between the counterions. As the Bjerrum
function, as discussed in Sec. Il C, suggests that the effedength increases the potential becomes negative for distances
tive potential between the counterions is attractive above garger than a certain critical distance, leading to an attractive
certain Bjerrum length due to counterion condensation. Théorce between two counterions. For even larger valudg pf
effective potential between two counterions themselves cathe effective potential exhibits a distinct minimum at a dis-
be calculated if the multicomponent model with polymerstance of about =20 in agreement with the position of the
and counterions is reduced to a simpler model consistingeak ing... Moreover, Fig. 4 shows that the minimum of the
only of counterions. We define this simple model in such apotential atr =2 is deeper for longer chains, i.e., the attrac-
way that the effective potential between the counterions ofive force between two counterions is stronger in a system
the new system yields exactly the same correlation functionvith longer polymer chains than in a system with shorter
Jcc @s found in the multicomponent case at the s&ooein-  ones. The transition from a repulsive to an attractive effec-
terion) density. Compared to a multicomponent systemtive potential may also be used to define a critical Bjerrum
where the correlation functions are calculated from a knownength for counterion condensation. Investigation along this
potential, we now calculate the potential from a known cor-line are underway.
relation function. Starting from the counterion—counterion  The method described above also allows us to calculate
correlation functiong., of the multicomponent model we the effective potential among the monomers. The equation
calculate an effective direct correlation functiog; via the  for the effective potential is identical to the one of the effec-
one-component Ornstein—Zernike equation: tive counterion potential, if we just replace the indezy m.
hei(K) Figure 5 dis_plays the effective_ monomer—monomer potential
ce _ calculated in the way described above at the density
wg(k)+pwc(k)hcc(k) =102 and for various Bjerrum lengths. The chain lengths
The RLWC closure for the one-component model of counte?® N='1O @ anq N=80 (b). Similar t'o'the counterion—
! L counterion potential, we observe a minimumrat2o for
rions is given by ;
Bjerrum lengthdg>1.5¢0. Hence, the monomers attract each

Ccc,eﬁ( k) =
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Bvcc,ef‘f( r)

04} (b) -

r’'c

FIG. 4. Effective potential between two counterions for various Bjerrum
lengthslz . The density isy=10"2 and the chain lengths ak=10 (a) and
N=380 (b).

FIG. 5. Effective potential between two monomers for various Bjerrum
lengthslg . The density isy=10"2 and the chain lengths ak=10 (a) and
N=280 (b).

other at high interaction strengths and small distances. A . . . . .
- . . . separating two different regimes in the behavioggf. For
similar behavior has been reported for multivalent ifhs. . ; .
|g below this value the counterions simply repel each other

Figure 6 ;hows tha't fqr low and moderate Bjerrpm Iengt.hsbecause of the Coulomb interaction. Above this value, how-
the effective potential is a monotonous decreasing function

. . - ever, the effective potential between the counterions is at-
for r>20 in agreement with the Debye—kkel approach. tractive and the ions condense on the chain. Therefore the
For r<2o¢ we find deviations from the Debye—kkel po- '

tential due to the depletion interactibhAt high Bjerrum  2@verage numbgr of counterlons W'th,'” agien distanoéa
lengths (5> o) the effective potential still decays in the av- counterion is first decreasing with increasingand forlg
erage as predicted by the Debye-gdel model. Apart from
the attractive interaction among the monomers=20),
however, we observe pronounced modulations on the lengtt
scale of the diameter of a monomer. These modulations are 1E
also caused by the depletion interaction. The quantitative :
comparison between our calculations and the Debyekelu
potential exhibits excellent agreement for the screening‘%
length as well as the dependence of that potential on the g
interaction strength. The deviations from the Debeyekdl Eoont
representation of the interaction among the monomers is noc 2
surprising. The condensation of the counterions leads to ¢
screening of the Coulomb interaction which is not captured
by the Debey—Hckel potential.

0.01

V. COUNTERION CONDENSATION

r'c

. From the dlSCUSSIOhS' above the questlon arises for WhICPIG. 6. Scaled effective potential (100,m ) between two monomers for
Bjerrum lengths Cqunterlon Condensa_\tlon can be expectedarious Bjerrum lengthss at the densityy=10"2. The chain length i
As we already pointed out there exists a Bjerrum length=8o.
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FIG. 7. Average number of counterions within a distancer20% another FIG. 9. Bjerrum lengths dependence of the number of condensed counteri-

counterion scaled by the same number for an uncharged system for variousis per monomer for various chain lengths. The density=s10~2.
packing fractionsy. The chain length i&N=10.

. _ o _ chain lengths. As is obvious from the figug, decreases
>|g increases withg . Thus, it is reasonable to defilg as  ith the packing fraction for low to moderate values
the critical Bjerrum length above which counterions CON-(ahout 104—10 2 depending on the chain lengtand in-
dense on a polyelectrolyte chain. _ creases withy for high densities. The drop ih% for 7

From Fig. 3 we see that the most probable distance bes.g 1 marks the breakdown of our definition fgy because

tween condensed counterions ig.2Accordingly, it is rea-  {he condensation in this density regime is dominated by
sonable to count the number of ions within a distamce packing aspects rather than the Bjerrum length. The Bjerrum
=2.50 of each other. The choice guarantees that all contength I} in dilute solutions is always lower for longer
densed ions are taken into account. Figure 7 displays thehains. This is in agreement with the discussion in Sec. Il
Bjerrum length dependence of the average number of counFhe counterions condense faster on longer chains than on
terionsN within a distance of 2.5 of another counterion, shorter ones. In dilute solutions, where the counterions are
scaled by the number of ions of an uncharged system, fogn the average far away from the chain, the counterions do
various packing fractions. The figure exhibits the expectegot see the local charges on the monomers but an effective
behavior: The number of ions slowly decreases for silgall particle with a charge dlZ,e. Therefore, the attraction be-
with increasinglg, but for Ig above a particular Bjerrum tween a counterion and the polymer chains is stronger for
length this number increases very rapidly, indicating counionger chains. On the other hand for high densitiésis
terion condensation. The critical Bjerrum lendth corre-  almost equal for all chain lengths. At high densities, the
sponds to the Bjerrum length at the minimum Mf.. In  counterions are on the average close to a chain and the ef-
addition, we calculate® . within various larger distances. fective charge is no longer given bByZ,e but by a few
We find a slight dependence ©f on the cutoff radiug . monomer charges and therefore independent of the chain

More precisely)§ increases with increasirfg Figure 8 dis-  length.

playsl} as a function of the packing fraction and for various ~ Furthermore, Fig. 8 shows that the critical Bjerrum
lengthlg can be quite different fronhz/o=1 predicted by
Manning as a condensation threshtid®*1t should be noted
that Manning’s calculations were done for a hard core sys-
tem in the limit of zero concentration and infinite polymer
length. Figure 8 actually indicates that this value is reached
with our definition ofl§ in the limit of very long chains and
very dilute solutions.

Finally, we calculated the number of counterions con-
densed on the chain. We consider a counterion as condensed
if it is within a distance of 1.6 of a monomer. Figure 9
shows the numbeNX . of condensed ions per monomer as a
function of the Bjerrum length for the density=10 2.

N increases monotonous with the Bjerrum length and

o1 . . . . . . . is, as expected from the discussions of the previous sections,
1070 108 107" always larger for longer chains. Furthermore, we can see
n from Fig. 9 that the influence of the chain length is stronger
FIG. 8. Critical Bjerrum length§ required for counterion condensation for shorter chains. This indicates thi,; should become

defined in Sec. V as a function of the packing fraction and for various chairind_ependen_t Of_ the chain length f_OI’ sufficiently long chains.
lengths. This behavior is in agreement with the results of computer
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