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Integral equation theory approach to rodlike polyelectrolytes:
Counterion condensation
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We investigate the structural properties of rigid linear polyelectrolytes in dilute and semidilute
solutions using an integral equation theory. The Polymer Reference Interaction Site Model together
with the Reference Laria Wu Chandler Closure is solved numerically taking the counterions into
account explicitly. The counterions and the polymer chains, modeled as linearly connected, charged
hard spheres, interact through an unscreened Coulomb potential. The pair correlation functions
between the monomers of different chains, the counterions, and the monomers and counterions,
respectively, are calculated for various densities and Bjerrum lengths. Based upon these quantities,
the effective potential among the monomers and the counterions, respectively, is extracted. In
particular, a critical Bjerrum length is determined, which separates the regime of a repulsive
interaction between the counterions from the regime of an attractive interaction transmitted by the
polymer chains. ©2001 American Institute of Physics.@DOI: 10.1063/1.1370075#
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I. INTRODUCTION

The study of polyelectrolytes, i.e., charged polymers d
solved in a polar solvent and in the presence of dissocia
counterions, has been an outstanding problem in poly
science for several decades, both from an experimenta
well as a theoretical point of view.1–5 The importance of this
class of polymers is quite obvious considering that the t
perhaps best known biopolymers, namely DNA and RN
are polyelectrolytes. The technical application of synthe
polyelectrolytes, such as sulfonated polystyrene or po
acrylic acid, are very widespread, ranging from water pur
cation through extraction of ions to stabilization of gels a
micelles and even to the use as an absorbent materia
diapers.1–3,6 Despite the theoretical and experimental effo
many properties of polyelectrolytes are, in comparison
neutral polymers, still poorly understood.7–12Experiments on
polyelectrolyte solutions using different methods often le
to controversial results.7 Furthermore, experimental resul
on single polyelectrolyte chains are still lacking due to t
immense problems caused by trace impurities and very
scattering intensities when measuring dilute solutions3,13

Therefore, scattering experiments and measurements o
radius of gyration are almost always performed in the se
dilute regime.14–18

From the theoretical point of view the main problem
understanding polyelectrolyte solutions is the long ran
Coulomb interaction. Renormalization group theories a
scaling ideas, which have proved to be very successful
neutral polymer solutions,19–21 are now difficult to apply.
The long range Coulomb interaction, together with screen

a!Electronic mail: thomas.hofmann@physik.uni-ulm.de
10180021-9606/2001/114(22)/10181/8/$18.00
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effects caused by the counterions, introduces more than
new length scale in the problem, which means that sh
range~hard core! and medium to long range interactions a
simultaneously present. This coupling of different leng
scales leads to a severe influence of the local chain prope
on the properties of the whole system.22–24

Computer simulations of polyelectrolyte solutions a
very time consuming, since the adequate treatment of
long range Coulomb potential requires techniques like
Ewald summation.25–28 Therefore, computer simulations ar
often limited to short chains and/or dilute solutions or ev
single chains.29–31 Nevertheless, computer simulations c
give deeper insight to polyelectrolyte systems, e.g., the co
terion distribution or chain conformations.32

Another theoretical approach to polyelectrolyte solutio
is the Polymer Reference Interaction Site Model~PRISM!
theory. The PRISM theory, which has been very successf
applied to neutral polymers,33–39 was first introduced by
Curro and Schweizer.35 The first applications of the PRISM
theory to polyelectrolyte solutions were based on a v
simple one-component model, which treated the counteri
within the Debye–Hu¨ckel approximation.40–42 This simple
model proved to be very useful to obtain the thermodynam
and structural properties. In particular, the scaling behav
of the first peak in the polymer structure factor could
explained by that approach for a wide range of parame
such as chain length, density, and Bjerrum length. Howe
this model is lacking some major features required fo
complete understanding of polyelectrolyte solutions. In
one-component model the distribution of the counterions
always implicitly assumed to be spherically symmetric. Th
approximation may be valid for weakly charged systems,
is clearly wrong for strong Coulomb interactions, whe
1 © 2001 American Institute of Physics
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counterion condensation is relevant. In the latter case s
or even all counterions are bound to the chain due to
strong electrostatic coupling between the monomers
counterions and only those counterions not condensed on
chain may be described in the Debye–Hu¨ckel approxima-
tion. Hence, counterion condensation cannot be describe
the one-component model. The growing interest in rec
years in the distribution of the counterions around the ch
and especially counterion condensation requires a more
phisticated model. Such a model is the so called primit
model.43 Here the counterions are taken into account exp
itly and all ionic species, i.e., the monomers and counterio
interact via hard core repulsion and an unscreened Coul
potential. Recent studies of polyelectrolyte systems44–47

based on this model have mainly concentrated on the va
tion of the density of the solution.

Various criteria are used to characterize counterion c
densation. Since the counterions are condensed on a pol
chain a measure of the amount of condensed counterion
obtained by counting their number within a certain distan
around a polymer~or monomer!.

Alternatively, the electrostatic binding energy might
used to determine a distance within which the ions are
clared to be condensed. Both of these methods have
shortcomings as discussed in Ref. 48 for a rod-like polym
Instead, in Refs. 48 and 49 an inflection point criterion
suggested to define the critical Bjerrum length and
amount of condensed ions. However, to apply this idea
dilute or semidilute systems is rather difficult, since the c
terion requires the association of a particular ion with a p
ticular polymer~at least partially!. It is this step which cause
major difficulties in a three dimensional system.44 Hence, it
is not obvious yet, whether the criterion is useful at all.

In this paper, we address the structural properties
polyelectrolyte solutions for various Bjerrum lengths, cha
lengths, and densities. In particular, we demonstrate tha
counterion–counterion pair correlation function can be u
to define a critical Bjerrum length, which separates the
gime of a repulsive interaction between the counterions
an attractive regime transmitted via the polymer chains.

The paper is organized as follows. In Sec. II the ch
model and the basic features of the PRISM theory are
scribed. In Sec. III results for the correlation functions a
presented. In Sec. IV we calculate the effective potential
tween counterions and between monomers, respectively
Sec. V we focus on the counterion condensation and pre
the criteria for the critical Bjerrum length above which cou
terion condensation is expected. Finally, Sec. VI summar
our results.

II. PRISM AND MODEL

A. PRISM

The PRISM theory is a liquid state theory based
modified Ornstein–Zernike integral equations.50 By taking
the connectivity of the monomers of a chain molecule in
account, the RISM theory, first proposed by Chandler a
Andersen51 for treating solutions of diatomic molecules, wa
extended to the PRISM theory by Curro and Schweize35
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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The PRISM theory as well as the Ornstein–Zernike equa
connects the total correlation functionh(r ), which is related
to the well known pair correlation functiong(r ) via h5g
21, with the direct correlation functionc(r ) and, in the case
of polymers with intramolecular correlation functions, th
intramolecular structure factor. For the primitive model stu
ied in this paper three different correlation functions are r
evant: the monomer–monomer, the counterion–counter
and the monomer–counterion correlation function. The
merical treatment of the PRISM equations faces, especi
for long polymer chains, a severe problem. In the origin
formulation of the PRISM equation all monomers of th
chain are treated explicitly, which means that a vast num
of coupled equations has to be solved. This problem can
solved if we neglect chain end effects and hence conside
monomers on the chain as equivalent. In this approxima
theN2 intermolecular correlation functionsgmm

i j , whereN is
the number of monomers of a chain andi, j are the indices of
the individual monomers on different chains, reduce to
single intermolecular correlation functiongmm between
monomers. Thus, the PRISM equations can conveniently
written in Fourier space as

hmm~k!5
v~k!

D~k!rm
~12rcccc~k!2D~k!!,

hcc~k!5
1

D~k!rc
~12rmv~k!cmm~k!2D~k!!,

hmc~k!5
v~k!

D~k!
cmc~k!,

D~k!512rcccc~k!2rmv~k!cmm~k!1rmrcvm~k!

3~cmm~k!ccc~k!2cmc
2 ~k!!,

whererm andrc are the monomer and counterion densitie
respectively, andv(k) denotes the single chain intramolec
lar structure factor. For symmetry reasons the monom
counterion (gmc) and counterion–monomer (gcm) correlation
functions are equivalent. The chain model itself enters so
through the intramolecular structure factor. It can easily
calculated for a fixed chain conformation or has to be de
mined in a self-consistent manner if conformational chan
of a chain have to be taken into account. Once the correla
functions are known, the structure factors of the solution c
be calculated in a straightforward manner:

Smm~k!5v~k!1rmhmm~k!,

Scc~k!511rchcc~k!,

Smc~k!5rmhmc~k!.

The PRISM equations can be solved, if additional equati
are available which connect the correlation functions w
the intermolecular pair potentials. These so called clos
relations are given exactly for hard core systems byg(r )
50 for r ,s, wheres is the diameter of the hard spher
Unfortunately, no exact closure relation exists forr .s and
approximations are required. Many such closures have b
proposed in the literature during the last decades.37,50 They
can be divided roughly into two groups: The atomic closur
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10183J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Rodlike polyelectrolytes
such as Percus–Yevick~PY!, hypernetted chain, and mea
spherical approximation are based on the theory of sim
atomic liquids,52–54 whereas the molecular closures, such
reference molecular hypernetted chain, Laria Wu Chan
~LWC!, or reference Laria Wu Chandler~RLWC!, take the
connectivity of the monomers into account.37,55 It has been
shown that the RLWC closure is a valid closure for polyele
trolyte systems.42 The RLWC closure is given by

v i~r !* ci j ~r !* v j~r !

5v i~r !* co,i j ~r !* v j~r !2v i~r !* bv i j ~r !* v j~r !1hi j ~r !

2ho,i j ~r !2 lnS gi j ~r !

go,i j ~r ! D , i , j P$m,c% ,

where the index 0 denotes reference functions obtained f
pure hard core system for the same densities with the
closure and the asterisks denotes convolution integrals
should be noted that in our notationvm(k)5v(k) and
vc(k)51. The set of coupled integral equations togeth
with the appropriate closures is solved iteratively until co
vergence is achieved using a Picard iteration scheme.50 The
convergence is usually quite fast and requires only a
minutes for a given set of parameters on a standard pers
computer.

B. Model of the system

The polyelectrolyte chains are modeled as a collection
N charged hard spheres with diametersm separated by a
fixed distancel and chargeZme. Since we consider rodlike
chains, the spheres are arranged in a linear configuration
this model no conformational changes have to be consid
as the chain remains in its rigid rod configuration for
parameter variations. Hence, the intramolecular structure
tor is given by

v~k!511
2

N (
j 51

N21

~N2 j !
sin~ jkl !

jkl
.

The counterions are also modeled as charged hard sph
with diametersc and a charge ofZce. Charge neutrality
requires that the monomer densityrm and the counterion
densityrc fulfill the equationZmrm1Zcrc50. The influence
of the solvent is treated in a mean field manner. It is
scribed as a homogeneous dielectric continuum with the
electric constante. The pair interaction potential for all ionic
species is given by

bv i j ~r !5bv i j
HC~r !1ZiZj

l B

r
; i , j P$m,c%,

wherev i j
HC(r ) is the hard core potential andl B5be2/e is the

Bjerrum length.

III. CORRELATION FUNCTIONS

The following results were obtained for systems w
monovalent counterions, i.e.,Zc521 and single charged
monomersZm511. In this case charge neutrality deman
rm5rc , therefore we use in the followingr5rc . Further-
more we setsm5sc5s, i.e., the counterions are of th
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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same size as the monomers. Moreover, in our calculat
the segment lengthl is equal to the hard core diamaters.
Instead of the densityr we will often use the dimensionles
packing fractionh5prs3/6. Unfortunately, the numerica
iteration scheme required for solving the PRISM equatio
does not always converge. This is especially true for hig
charged systems and depends on density. The usage of
closures leads to the same problems even at smaller Bje
lengths. Hence the limitation of the parameter range seem
be a consequence of the closure and not of the nume
iteration scheme. As already mentioned above, the den
dependence of the relevant properties has already been
cussed in detail in other publications.44–46Therefore, we will
mainly discuss the influence of the Bjerrum and cha
lengths on the structure of the system.

A. Monomer–monomer correlation

Figure 1 presents the monomer–monomer pair corr
tion function for various Bjerrum lengths ranging from ve
weakly charged systems up to well above the Mann
threshold for counterion condensation (l B /s51). The pack-
ing fraction ish51022. Results for chain lengthsN510 ~a!
and N580 ~b! are presented. In contrast to the variation
the density, which has a rather large influence on the st
ture and therefore on the monomer–monomer correla
function, the variation of the Bjerrum length causes on
minor changes ingmm. Figure 1 shows that the contact valu

FIG. 1. Monomer–monomer pair correlation functiongmm(r ) for various
Bjerrum lengthsl B . The density ish51022 and the chain lengths areN
510 ~a! andN580 ~b!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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gmm(s) decreases with increasingl B and simultaneously a
small peak arises atr'7s. Notice that all curves for the
different values ofl B cross each other at the same distancr.
A detailed examination shows that this distance increa
with decreasing density. A similar calculation within th
Debye–Hu¨ckel approximation yields almost indistinguish
able results, which suggests that increasingl B not only in-
creases the bare repulsion among the monomers but als
duces a screening by the counterions. Furthermore, Fi
shows that the monomer–monomer pair correlation fu
tions of the two different chain lengths are virtually indisti
guishable. This has to be expected as the density is on
order of the overlap concentration given byr* 51/N2.

Our calculations confirm the scaling relations of the de
sity dependence of the positionkmax of the first peak in the
monomer–monomer structure factor.56–59 However, inbe-
tween the two known regimes we find an additional lar
density range with a scaling exponent different from t
known ones, particularly for long chains. A more detail
discussion of this issue will be presented elsewhere.

B. Monomer–counterion correlation

The distribution of the counterions around the monom
of a chain can be described by the monomer–counterion
relation functiongmc. Figure 2 displaysgmc for different
Bjerrum lengthsl B at the densityh51022 and the chain

FIG. 2. Monomer–counterion pair correlation functiongmc(r ) for various
Bjerrum lengthsl B . The density ish51022 and the chain lengths areN
510 ~a! andN580 ~b!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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lengthsN510 ~a! and N580 ~b!. For small l B gmc(r ) is
nearly constant with a value of about one for allr. Hence, the
local counterion density matches the bulk density alm
everywhere, i.e., the counterions are distributed homo
neously over the whole system. With increasing Bjerru
length an increasing peak appears atr 5s and a much
smaller peak atr 52s. This implies that the counterions ar
now no longer homogeneously distributed, but are fou
with larger probability in the vicinity of the chains. It shoul
be noted that the distancer 5s is the smallest possible dis
tance between monomers and counterions because o
hard core repulsion. The modulations ofgmc clearly reflect
counterion condensation~see discussion in Sec. IV!. An in-
teresting fact can be observed by comparing Figs. 2~a! and
2~b! for the two values of the chain lengths. The height of t
peak ingmc increases with increasing monomer numberN.
Since the pair correlation function is directly connected
the number of counterions per monomer it is obvious fro
this figure that for longer chains more counterions per mo
mer are condensed than for shorter chains at the same
rum length.

C. Counterion–counterion correlation

The counterion–counterion correlation functiongcc pro-
vides a deeper insight into the issue of counterion conde
tion. Figure 3 displaysgcc for different Bjerrum lengths and

FIG. 3. Counterion–counterion pair correlation functiongcc(r ) for various
Bjerrum lengthsl B . The density ish51022 and the chain lengths areN
510 ~a! andN580 ~b!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10185J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Rodlike polyelectrolytes
two chain lengths,N510 ~a! and N580 ~b!, at the density
h51022. For very low l B gcc is constant for almost all dis
tances, corresponding to a homogeneous distribution of
counterions. An increase of the Bjerrum length first leads
a decrease of the contact valuegcc(s) and the overall func-
tion value for short distances. A further increase ofl B reverts
this behavior and a peak appears atr 52s. The height of the
peak increases with increasingl B and its width decreases
This behavior can be explained by counterion condensat
For l B well below the critical Bjerrum length for counterio
condensation, an increase ofl B results in stronger repulsio
of the counterions. Therefore the counterions are repe
from each other corresponding to a decrease ofgcc at small
length scales. If the Bjerrum length is further increased
counterions are attracted by the polyion and start to cond
sate on the chain, which must be accompanied by a decr
of the mean separation between ions. Consequently,gcc

starts to increase at short distances. Hence, despite the r
sive Coulomb interaction the counterions are, for sufficien
strong interactions, subject to an effective attractive poten
next to a polymer chain. This aspect is discussed in deta
Sec. IV. The position of the peak atr 52s is quite simple to
explain if we consider the configuration with the lowest e
ergy. The electrostatic interaction forces the condensed
to be as close to the monomers as possible but at the s
time as far apart as possible from each other. This
achieved, if the counterions are located on opposite site
the chain monomers. From Fig. 3 follows that the Bjerru
length, which corresponds to the turning point in the beh
ior of gcc described above, is lower for longer chains. This
in agreement with the fact discussed previously that lon
chains carry more condensed ions per monomer than sh
chains at the same Bjerrum length.

IV. EFFECTIVE POTENTIAL

The behavior of the counterion–counterion correlat
function, as discussed in Sec. III C, suggests that the ef
tive potential between the counterions is attractive abov
certain Bjerrum length due to counterion condensation. T
effective potential between two counterions themselves
be calculated if the multicomponent model with polyme
and counterions is reduced to a simpler model consis
only of counterions. We define this simple model in such
way that the effective potential between the counterions
the new system yields exactly the same correlation func
gcc as found in the multicomponent case at the same~coun-
terion! density. Compared to a multicomponent syste
where the correlation functions are calculated from a kno
potential, we now calculate the potential from a known c
relation function. Starting from the counterion–counteri
correlation functiongcc of the multicomponent model we
calculate an effective direct correlation functionceff via the
one-component Ornstein–Zernike equation:

ccc,eff~k!5
hcc~k!

vc
2~k!1rvc~k!hcc~k!

.

The RLWC closure for the one-component model of coun
rions is given by
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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vc~r!*ccc,eff~r !* vc~r !

5vc~r !* co,cc,eff~r !* vc~r !2vc~r !* bvcc,eff~r !* vc~r !

1hcc~r !2ho,cc,eff~r !2 lnS gcc~r !

go,cc,eff~r ! D ,

where co,cc,eff and go,cc,eff denote reference functions ob
tained for a pure one-component hard core system with
PY closure at the same density. It should be noted that
correlation functionshcc and gcc are, by definition of the
effective potential, the same as the correlation functions
the multicomponent model. Subtracting this equation fro
the RLWC closure of the multicomponent system and
tracting the effective potential, we obtain

bvcc,eff~r !5bvcc~r !1~ccc~r !2ccc,eff~r !!2~co,cc~r !

2co,cc,eff~r !!2Fcc~r !,

vc~r !* Fcc~r !* vc~r !5~ho,cc,eff~r !2ho,cc~r !!

1 lnS go,cc~r !

go,cc,eff~r ! D .

For low and moderate densities~smaller than the overlap
density! the reference functions of the multicomponent a
the one-component model are almost equal and hence
effective potential is in good approximation given by

bvcc,eff~r !5bvcc~r !1~ccc~r !2ccc,eff~r !!.

Therefore, the effective potential is equal to the bare pot
tial plus a modification given by the difference in the dire
correlation functions of the multicomponent and on
component model. Figure 4 shows the effective counterio
counterion potential obtained in the way described above
different Bjerrum lengths and two chain lengths,N510 ~a!
andN580 ~b!, at the densityh51022. As is obvious from
this figure, the effective potential is purely repulsive for lo
values ofl B and can very well be approximated by the ba
Coulomb potential between the counterions. As the Bjerr
length increases the potential becomes negative for dista
larger than a certain critical distance, leading to an attrac
force between two counterions. For even larger values ofl B ,
the effective potential exhibits a distinct minimum at a d
tance of aboutr 52s in agreement with the position of th
peak ingcc. Moreover, Fig. 4 shows that the minimum of th
potential atr 52s is deeper for longer chains, i.e., the attra
tive force between two counterions is stronger in a syst
with longer polymer chains than in a system with shor
ones. The transition from a repulsive to an attractive eff
tive potential may also be used to define a critical Bjerru
length for counterion condensation. Investigation along t
line are underway.

The method described above also allows us to calcu
the effective potential among the monomers. The equa
for the effective potential is identical to the one of the effe
tive counterion potential, if we just replace the indexc by m.
Figure 5 displays the effective monomer–monomer poten
calculated in the way described above at the densityh
51022 and for various Bjerrum lengths. The chain lengt
are N510 ~a! and N580 ~b!. Similar to the counterion–
counterion potential, we observe a minimum atr'2s for

Bjerrum lengthsl B.1.5s. Hence, the monomers attract each

 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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other at high interaction strengths and small distances
similar behavior has been reported for multivalent ions60

Figure 6 shows that for low and moderate Bjerrum leng
the effective potential is a monotonous decreasing func
for r .2s in agreement with the Debye–Hu¨ckel approach.
For r ,2s we find deviations from the Debye–Hu¨ckel po-
tential due to the depletion interaction.61 At high Bjerrum
lengths (l B.s) the effective potential still decays in the a
erage as predicted by the Debye–Hu¨ckel model. Apart from
the attractive interaction among the monomers (r'2s),
however, we observe pronounced modulations on the len
scale of the diameter of a monomer. These modulations
also caused by the depletion interaction. The quantita
comparison between our calculations and the Debye–Hu¨ckel
potential exhibits excellent agreement for the screen
length as well as the dependence of that potential on
interaction strength. The deviations from the Debey–Hu¨ckel
representation of the interaction among the monomers is
surprising. The condensation of the counterions leads
screening of the Coulomb interaction which is not captu
by the Debey–Hu¨ckel potential.

V. COUNTERION CONDENSATION

From the discussions above the question arises for w
Bjerrum lengths counterion condensation can be expec
As we already pointed out there exists a Bjerrum len

FIG. 4. Effective potential between two counterions for various Bjerr
lengthsl B . The density ish51022 and the chain lengths areN510 ~a! and
N580 ~b!.
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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separating two different regimes in the behavior ofgcc. For
l B below this value the counterions simply repel each ot
because of the Coulomb interaction. Above this value, ho
ever, the effective potential between the counterions is
tractive and the ions condense on the chain. Therefore
average number of counterions within a given distancer̂ of a
counterion is first decreasing with increasingl B and for l B

FIG. 5. Effective potential between two monomers for various Bjerru
lengthsl B . The density ish51022 and the chain lengths areN510 ~a! and
N580 ~b!.

FIG. 6. Scaled effective potential (logrvmm,eff) between two monomers for
various Bjerrum lengthsl B at the densityh51022. The chain length isN
580.
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.lB* increases withl B . Thus, it is reasonable to definel B* as
the critical Bjerrum length above which counterions co
dense on a polyelectrolyte chain.

From Fig. 3 we see that the most probable distance
tween condensed counterions is 2s. Accordingly, it is rea-
sonable to count the number of ions within a distancer̂
52.5s of each other. The choice guarantees that all c
densed ions are taken into account. Figure 7 displays
Bjerrum length dependence of the average number of co
terionsNcc within a distance of 2.5s of another counterion
scaled by the number of ions of an uncharged system,
various packing fractions. The figure exhibits the expec
behavior: The number of ions slowly decreases for small B

with increasingl B , but for l B above a particular Bjerrum
length this number increases very rapidly, indicating co
terion condensation. The critical Bjerrum lengthl B* corre-
sponds to the Bjerrum length at the minimum ofNcc. In
addition, we calculatedNcc within various larger distances
We find a slight dependence ofl B* on the cutoff radiusr̂ .
More precisely,l B* increases with increasingr̂ . Figure 8 dis-
playsl B* as a function of the packing fraction and for vario

FIG. 7. Average number of counterions within a distance 2.5s of another
counterion scaled by the same number for an uncharged system for va
packing fractionsh. The chain length isN510.

FIG. 8. Critical Bjerrum lengthl B* required for counterion condensatio
defined in Sec. V as a function of the packing fraction and for various ch
lengths.
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chain lengths. As is obvious from the figure,l B* decreases
with the packing fraction for low to moderateh values
~about 1024– 1023 depending on the chain length! and in-
creases withh for high densities. The drop inl B* for h
.0.1 marks the breakdown of our definition forl B* because
the condensation in this density regime is dominated
packing aspects rather than the Bjerrum length. The Bjerr
length l B* in dilute solutions is always lower for longe
chains. This is in agreement with the discussion in Sec.
The counterions condense faster on longer chains than
shorter ones. In dilute solutions, where the counterions
on the average far away from the chain, the counterions
not see the local charges on the monomers but an effec
particle with a charge ofNZpe. Therefore, the attraction be
tween a counterion and the polymer chains is stronger
longer chains. On the other hand for high densities,l B* is
almost equal for all chain lengths. At high densities, t
counterions are on the average close to a chain and the
fective charge is no longer given byNZpe but by a few
monomer charges and therefore independent of the c
length.

Furthermore, Fig. 8 shows that the critical Bjerru
length l B* can be quite different froml B /s51 predicted by
Manning as a condensation threshold.62–64It should be noted
that Manning’s calculations were done for a hard core s
tem in the limit of zero concentration and infinite polym
length. Figure 8 actually indicates that this value is reach
with our definition ofl B* in the limit of very long chains and
very dilute solutions.

Finally, we calculated the number of counterions co
densed on the chain. We consider a counterion as conde
if it is within a distance of 1.5s of a monomer. Figure 9
shows the numberNmc of condensed ions per monomer as
function of the Bjerrum length for the densityh51022.

Nmc increases monotonous with the Bjerrum length a
is, as expected from the discussions of the previous secti
always larger for longer chains. Furthermore, we can
from Fig. 9 that the influence of the chain length is strong
for shorter chains. This indicates thatNmc should become
independent of the chain length for sufficiently long chain
This behavior is in agreement with the results of compu

us

in

FIG. 9. Bjerrum lengths dependence of the number of condensed coun
ons per monomer for various chain lengths. The density ish51022.
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simulations.32 It should be noted that the limiting number fo
Nmc at large Bjerrum lengths is two because in the comp
condensed state there are two counterions within a dista
of 1.5s from each monomer.

In Refs. 48 and 49 a different criterion for counterio
condensation is provided. Investigating the counterion dis
bution of an infinite rod within the cell model by th
Poisson–Boltzmann theory and computer simulations the
thors suggest using the inflection point of the probabi
distribution of counterions transverse to the rod axis to se
rate condensed from noncondensed ions. The idea is intr
ing but the criterion is difficult to apply in our three
dimensional system of many chains. The inflection po
criterion is useful when a counterion can uniquely be
signed to a particular chain. That is possible in compu
simulations of ~effectively! single chains like in the cel
model. For a system of many chains the assignment of an
to a particular chain is a difficult task44 and it is not obvious
whether the inflection point criterion is useful.

There are alternative criteria to separate condensed f
noncondensed ions using the pair correlation functions p
vided by the PRISM theory. A detailed discussion will b
presented in an upcoming publication.

VI. CONCLUSION

We have analyzed the structural properties of polyel
trolyte solutions with explicit incorporation of counterion
using the PRISM integral equation theory. Particular att
tion has been paid to counterion condensation. The polye
trolyte chains are modeled as rigid rods interacting with e
other and the counterions through hard core repulsion
the Coulomb potential. The Bjerrum length dependence
the structure of the system was studied by the correla
functions between the different ionic species. We found t
beyond a critical Bjerrum length the counterions conde
on the polymer chains. We introduced a new criterium
the minimum Bjerrum lengthl B* required for condensation
which is, in the appropriate limit, equivalent to the Manni
criterium.

It seems obvious to us that the PRISM integral equati
capture the main features required to describe polyelectro
solutions. The next step should be the study of the cha
induced conformational changes of flexible and semiflexi
chains using a self-consistent approach. Investigations a
that line are underway.
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