000046810 001__ 46810
000046810 005__ 20240610120423.0
000046810 0247_ $$2DOI$$a10.1016/S0378-4371(01)00022-X
000046810 0247_ $$2WOS$$aWOS:000168774800003
000046810 037__ $$aPreJuSER-46810
000046810 041__ $$aeng
000046810 082__ $$a500
000046810 084__ $$2WoS$$aPhysics, Multidisciplinary
000046810 1001_ $$0P:(DE-Juel1)VDB889$$aLamura, A.$$b0
000046810 245__ $$aLattice Boltzmann simulations of segregating binary fluid mixtures in shear flow
000046810 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2001
000046810 300__ $$a295 - 312
000046810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000046810 3367_ $$2DataCite$$aOutput Types/Journal article
000046810 3367_ $$00$$2EndNote$$aJournal Article
000046810 3367_ $$2BibTeX$$aARTICLE
000046810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000046810 3367_ $$2DRIVER$$aarticle
000046810 440_0 $$04906$$aPhysica A$$v294$$x0378-4371
000046810 500__ $$aRecord converted from VDB: 12.11.2012
000046810 520__ $$aWe apply lattice Boltzmann method to study the phase separation of a two-dimensional binary fluid mixture in shear flow. The algorithm can simulate systems described by the Navier-Stokes and convection-diffusion equations. We propose a new scheme for imposing the shear flow which has the advantage of preserving mass and momentum conservation on the boundary walls without introducing slip velocities. We study how the steady Velocity profile is reached. Our main results show the presence of two typical length scales in the phase separation process, corresponding to domains with two different thicknesses. (C) 2001 Elsevier Science B.V. All rights reserved.
000046810 536__ $$0G:(DE-Juel1)FUEK53$$2G:(DE-HGF)$$aPolymere, Membranen und komplexe Flüssigkeiten$$c23.30.0$$x0
000046810 588__ $$aDataset connected to Web of Science
000046810 65320 $$2Author$$alattice Boltzmann equations
000046810 65320 $$2Author$$anonslip boundary conditions
000046810 65320 $$2Author$$acomputer simulations
000046810 65320 $$2Author$$abinary fluid mixtures
000046810 65320 $$2Author$$aphase separation
000046810 650_7 $$2WoSType$$aJ
000046810 7001_ $$0P:(DE-HGF)0$$aGonnella, G.$$b1
000046810 773__ $$0PERI:(DE-600)1466577-3$$a10.1016/S0378-4371(01)00022-X$$gVol. 294, p. 295 - 312$$p295 - 312$$q294<295 - 312$$tPhysica / A$$v294$$x0378-4371$$y2001
000046810 8567_ $$uhttp://dx.doi.org/10.1016/S0378-4371(01)00022-X
000046810 909CO $$ooai:juser.fz-juelich.de:46810$$pVDB
000046810 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000046810 9141_ $$y2001
000046810 9131_ $$0G:(DE-Juel1)FUEK53$$bStruktur der Materie und Materialforschung$$k23.30.0$$lFestkörperforschung$$vPolymere, Membranen und komplexe Flüssigkeiten$$x0
000046810 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000046810 970__ $$aVDB:(DE-Juel1)89
000046810 980__ $$aVDB
000046810 980__ $$aConvertedRecord
000046810 980__ $$ajournal
000046810 980__ $$aI:(DE-Juel1)ICS-2-20110106
000046810 980__ $$aUNRESTRICTED
000046810 981__ $$aI:(DE-Juel1)IBI-5-20200312
000046810 981__ $$aI:(DE-Juel1)IAS-2-20090406
000046810 981__ $$aI:(DE-Juel1)ICS-2-20110106