001     4685
005     20200402210445.0
024 7 _ |2 pmid
|a pmid:19183848
024 7 _ |2 DOI
|a 10.1007/s00018-009-8771-9
024 7 _ |2 WOS
|a WOS:000268003600004
037 _ _ |a PreJuSER-4685
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Cell Biology
100 1 _ |a Fitter, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)131961
245 _ _ |a The perspective of studying multi-domain protein folding
260 _ _ |a Basel
|b Birkhäuser
|c 2009
300 _ _ |a 1672 - 1681
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Cellular and Molecular Life Sciences
|x 1420-682X
|0 1153
|v 66
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Most of fundamental studies on protein folding have been performed with small globular proteins consisting of a single domain. In vitro many of these proteins are well characterized by a reversible two-state folding scheme. However, the majority of proteins in the cell belong to the class of larger multi-domain proteins that often unfold irreversibly under in vitro conditions. This makes folding studies difficult or even impossible. In spite of these problems for many multi-domain proteins, folding has been investigated by classical refolding. Co-translational folding of nascent polypeptide chains when synthesized by ribosomes has also been studied. Single molecule techniques represent a promising approach for future studies on the folding of multi-domain proteins, and tremendous advances have been made in these techniques in recent years. In particular, fluorescence-based methods can contribute significantly to an understanding of the fundamental principles of multi-domain protein folding.
536 _ _ |a Programm Biosoft
|c N03
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK443
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Protein Folding
650 _ 2 |2 MeSH
|a Protein Structure, Tertiary
650 _ 2 |2 MeSH
|a Proteins: chemistry
650 _ 2 |2 MeSH
|a Spectrometry, Fluorescence
650 _ 7 |0 0
|2 NLM Chemicals
|a Proteins
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Irreversible unfolding
653 2 0 |2 Author
|a protein aggregation
653 2 0 |2 Author
|a domain interaction
653 2 0 |2 Author
|a co-translational folding
653 2 0 |2 Author
|a single molecule studies
653 2 0 |2 Author
|a fluorescence correlation spectroscopy
773 _ _ |a 10.1007/s00018-009-8771-9
|g Vol. 66, p. 1672 - 1681
|p 1672 - 1681
|q 66<1672 - 1681
|0 PERI:(DE-600)1458497-9
|t Cellular and molecular life sciences
|v 66
|y 2009
|x 1420-682X
856 7 _ |u http://dx.doi.org/10.1007/s00018-009-8771-9
909 C O |o oai:juser.fz-juelich.de:4685
|p VDB
913 1 _ |k N03
|v Programm Biosoft
|l BioSoft
|b Schlüsseltechnologien
|z entfällt
|0 G:(DE-Juel1)FUEK443
|x 0
914 1 _ |a NO 3 ist übergangsweise die Bezeichnung des FE-Vorhabens für das ISB-2
|y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISB-2
|l Molekulare Biophysik
|d 31.12.2010
|g ISB
|0 I:(DE-Juel1)ISB-2-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)111871
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21