001     46874
005     20200402205958.0
024 7 _ |2 DOI
|a 10.1046/j.1469-8137.2001.00014.x
024 7 _ |2 WOS
|a WOS:000166890800017
037 _ _ |a PreJuSER-46874
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Jentschke, G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2001
300 _ _ |a 327 - 337
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Phytologist
|x 0028-646X
|0 4600
|v 149
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Translocation is shown of phosphorus, nitrogen, potassium and magnesium to a P-deficient host from ectomycorrhizal fungal hyphae.Mycorrhizal (with Paxillus involutus) and nonmycorrhizal P-deficient spruce (P. abies) seedlings were grown in a two-compartment sand-culture system. Hyphal translocation of nutrients from the inner compartment (penetrated only by hyphae) to the host was measured using mass balance (for N, P and K) or stable isotope (N-15 and Mg-25) methods.Addition of P to the hyphal compartment strongly stimulated hyphal growth, and this also increased both seedling P status and growth. Hyphae translocated nonlimiting elements in addition to P, contributing 52, 17, 5 and 3-4%, respectively, to total P, N, K or Mg plant uptake. The potential role of the ectomycorrhizal mycelium in K acquisition was demonstrated. Translocation to mycorrhizal seedings of N, K and Mg was strongly reduced when hyphal P-fluxes ceased; this translocation of nonlimiting nutrients depended on simultaneous translocation of P.The ectomycorrhizal mycelium has an active role in P acquisition from sources not available to roots. Nutrient fluxes within fungal hyphae are interdependent and strong coupling of N, K and Mg fluxes with long-distance P translocation in the mycorrhizal mycelium occurs.
536 _ _ |a Zelluläre Signalverarbeitung
|c 42.20.1
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK95
|x 0
536 _ _ |a Nähr- und Schadstoffaustausch zwischen Pflanze-Atmosphäre-Boden
|c 36.51.0
|0 G:(DE-Juel1)FUEK80
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a external mycelium
653 2 0 |2 Author
|a magnesium translocation
653 2 0 |2 Author
|a nitrogen translocation
653 2 0 |2 Author
|a Paxillus involutus
653 2 0 |2 Author
|a phosphorus translocation
653 2 0 |2 Author
|a Picea abies
653 2 0 |2 Author
|a potassium translocation
700 1 _ |a Brandes, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kuhn, A. J.
|0 P:(DE-Juel1)129349
|b 2
|u FZJ
700 1 _ |a Schröder, W. H.
|0 P:(DE-Juel1)VDB1472
|b 3
|u FZJ
700 1 _ |a Gobold, D. L.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1046/j.1469-8137.2001.00014.x
|g Vol. 149, p. 327 - 337
|p 327 - 337
|q 149<327 - 337
|0 PERI:(DE-600)1472194-6
|t The @new phytologist
|v 149
|y 2001
|x 0028-646X
909 C O |o oai:juser.fz-juelich.de:46874
|p VDB
913 1 _ |k 42.20.1
|v Zelluläre Signalverarbeitung
|l Biologische Informationsverarbeitung
|b Lebenswissenschaften
|0 G:(DE-Juel1)FUEK95
|x 0
913 1 _ |k 36.51.0
|v Nähr- und Schadstoffaustausch zwischen Pflanze-Atmosphäre-Boden
|l Umweltforschung
|b Umweltvorsorgeforschung
|0 G:(DE-Juel1)FUEK80
|x 1
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBI-1
|l Zelluläre Signalverarbeitung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB57
|x 0
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 1
970 _ _ |a VDB:(DE-Juel1)980
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21