000004701 001__ 4701 000004701 005__ 20200402210447.0 000004701 0247_ $$2pmid$$apmid:19238378 000004701 0247_ $$2DOI$$a10.1007/s00249-009-0410-8 000004701 0247_ $$2WOS$$aWOS:000265917300005 000004701 037__ $$aPreJuSER-4701 000004701 041__ $$aeng 000004701 082__ $$a570 000004701 084__ $$2WoS$$aBiophysics 000004701 1001_ $$0P:(DE-HGF)0$$aArtmann, G.M.$$b0 000004701 245__ $$aHemoglobin senses body temperature 000004701 260__ $$aBerlin$$bSpringer$$c2009 000004701 300__ $$a589 - 600 000004701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000004701 3367_ $$2DataCite$$aOutput Types/Journal article 000004701 3367_ $$00$$2EndNote$$aJournal Article 000004701 3367_ $$2BibTeX$$aARTICLE 000004701 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000004701 3367_ $$2DRIVER$$aarticle 000004701 440_0 $$010441$$aEuropean Biophysics Journal : with Biophysics Letters$$v38$$x0175-7571 000004701 500__ $$aThis work was supported by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia to G. M. 000004701 520__ $$aWhen aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). In conclusion: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins. 000004701 536__ $$0G:(DE-Juel1)FUEK443$$2G:(DE-HGF)$$aProgramm Biosoft$$cN03$$x0 000004701 588__ $$aDataset connected to Web of Science, Pubmed 000004701 650_2 $$2MeSH$$aBody Temperature 000004701 650_2 $$2MeSH$$aErythrocyte Volume 000004701 650_2 $$2MeSH$$aHemoglobins: chemistry 000004701 650_2 $$2MeSH$$aHemoglobins: metabolism 000004701 650_2 $$2MeSH$$aHumans 000004701 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy 000004701 650_2 $$2MeSH$$aOsmotic Pressure 000004701 650_2 $$2MeSH$$aPhase Transition 000004701 650_2 $$2MeSH$$aTemperature 000004701 650_2 $$2MeSH$$aWater: metabolism 000004701 650_7 $$00$$2NLM Chemicals$$aHemoglobins 000004701 650_7 $$07732-18-5$$2NLM Chemicals$$aWater 000004701 650_7 $$2WoSType$$aJ 000004701 65320 $$2Author$$aRed blood cells 000004701 65320 $$2Author$$aHemoglobin 000004701 65320 $$2Author$$aTemperature transition 000004701 65320 $$2Author$$aBody temperature 000004701 65320 $$2Author$$aColloid osmotic pressure 000004701 65320 $$2Author$$aConfined water 000004701 65320 $$2Author$$aGlass transition 000004701 65320 $$2Author$$aNMR T-1 000004701 7001_ $$0P:(DE-HGF)0$$aDigel, I.$$b1 000004701 7001_ $$0P:(DE-HGF)0$$aZerlin, K.F.$$b2 000004701 7001_ $$0P:(DE-HGF)0$$aMaggakis-Kelemen, Ch.$$b3 000004701 7001_ $$0P:(DE-HGF)0$$aLinder, Pt.$$b4 000004701 7001_ $$0P:(DE-HGF)0$$aPorst, D.$$b5 000004701 7001_ $$0P:(DE-Juel1)VDB78506$$aStadler, A.M.$$b6$$uFZJ 000004701 7001_ $$0P:(DE-HGF)0$$aKayser, P.$$b7 000004701 7001_ $$0P:(DE-HGF)0$$aDikta, G.$$b8 000004701 7001_ $$0P:(DE-HGF)0$$aTemiz Artmann, A.$$b9 000004701 773__ $$0PERI:(DE-600)1398349-0$$a10.1007/s00249-009-0410-8$$gVol. 38, p. 589 - 600$$p589 - 600$$q38<589 - 600$$tEuropean biophysics journal$$v38$$x0175-7571$$y2009 000004701 8567_ $$uhttp://dx.doi.org/10.1007/s00249-009-0410-8 000004701 909CO $$ooai:juser.fz-juelich.de:4701$$pVDB 000004701 9131_ $$0G:(DE-Juel1)FUEK443$$bSchlüsseltechnologien$$kN03$$lBioSoft$$vProgramm Biosoft$$x0$$zentfällt 000004701 9141_ $$y2009 000004701 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000004701 9201_ $$0I:(DE-Juel1)ISB-2-20090406$$d31.12.2010$$gISB$$kISB-2$$lMolekulare Biophysik$$x0 000004701 970__ $$aVDB:(DE-Juel1)111890 000004701 980__ $$aVDB 000004701 980__ $$aConvertedRecord 000004701 980__ $$ajournal 000004701 980__ $$aI:(DE-Juel1)ICS-6-20110106 000004701 980__ $$aUNRESTRICTED 000004701 981__ $$aI:(DE-Juel1)IBI-7-20200312 000004701 981__ $$aI:(DE-Juel1)ICS-6-20110106 000004701 981__ $$aI:(DE-Juel1)ISB-2-20090406