000004701 001__ 4701
000004701 005__ 20200402210447.0
000004701 0247_ $$2pmid$$apmid:19238378
000004701 0247_ $$2DOI$$a10.1007/s00249-009-0410-8
000004701 0247_ $$2WOS$$aWOS:000265917300005
000004701 037__ $$aPreJuSER-4701
000004701 041__ $$aeng
000004701 082__ $$a570
000004701 084__ $$2WoS$$aBiophysics
000004701 1001_ $$0P:(DE-HGF)0$$aArtmann, G.M.$$b0
000004701 245__ $$aHemoglobin senses body temperature
000004701 260__ $$aBerlin$$bSpringer$$c2009
000004701 300__ $$a589 - 600
000004701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004701 3367_ $$2DataCite$$aOutput Types/Journal article
000004701 3367_ $$00$$2EndNote$$aJournal Article
000004701 3367_ $$2BibTeX$$aARTICLE
000004701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004701 3367_ $$2DRIVER$$aarticle
000004701 440_0 $$010441$$aEuropean Biophysics Journal : with Biophysics Letters$$v38$$x0175-7571
000004701 500__ $$aThis work was supported by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia to G. M.
000004701 520__ $$aWhen aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). In conclusion: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins.
000004701 536__ $$0G:(DE-Juel1)FUEK443$$2G:(DE-HGF)$$aProgramm Biosoft$$cN03$$x0
000004701 588__ $$aDataset connected to Web of Science, Pubmed
000004701 650_2 $$2MeSH$$aBody Temperature
000004701 650_2 $$2MeSH$$aErythrocyte Volume
000004701 650_2 $$2MeSH$$aHemoglobins: chemistry
000004701 650_2 $$2MeSH$$aHemoglobins: metabolism
000004701 650_2 $$2MeSH$$aHumans
000004701 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000004701 650_2 $$2MeSH$$aOsmotic Pressure
000004701 650_2 $$2MeSH$$aPhase Transition
000004701 650_2 $$2MeSH$$aTemperature
000004701 650_2 $$2MeSH$$aWater: metabolism
000004701 650_7 $$00$$2NLM Chemicals$$aHemoglobins
000004701 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000004701 650_7 $$2WoSType$$aJ
000004701 65320 $$2Author$$aRed blood cells
000004701 65320 $$2Author$$aHemoglobin
000004701 65320 $$2Author$$aTemperature transition
000004701 65320 $$2Author$$aBody temperature
000004701 65320 $$2Author$$aColloid osmotic pressure
000004701 65320 $$2Author$$aConfined water
000004701 65320 $$2Author$$aGlass transition
000004701 65320 $$2Author$$aNMR T-1
000004701 7001_ $$0P:(DE-HGF)0$$aDigel, I.$$b1
000004701 7001_ $$0P:(DE-HGF)0$$aZerlin, K.F.$$b2
000004701 7001_ $$0P:(DE-HGF)0$$aMaggakis-Kelemen, Ch.$$b3
000004701 7001_ $$0P:(DE-HGF)0$$aLinder, Pt.$$b4
000004701 7001_ $$0P:(DE-HGF)0$$aPorst, D.$$b5
000004701 7001_ $$0P:(DE-Juel1)VDB78506$$aStadler, A.M.$$b6$$uFZJ
000004701 7001_ $$0P:(DE-HGF)0$$aKayser, P.$$b7
000004701 7001_ $$0P:(DE-HGF)0$$aDikta, G.$$b8
000004701 7001_ $$0P:(DE-HGF)0$$aTemiz Artmann, A.$$b9
000004701 773__ $$0PERI:(DE-600)1398349-0$$a10.1007/s00249-009-0410-8$$gVol. 38, p. 589 - 600$$p589 - 600$$q38<589 - 600$$tEuropean biophysics journal$$v38$$x0175-7571$$y2009
000004701 8567_ $$uhttp://dx.doi.org/10.1007/s00249-009-0410-8
000004701 909CO $$ooai:juser.fz-juelich.de:4701$$pVDB
000004701 9131_ $$0G:(DE-Juel1)FUEK443$$bSchlüsseltechnologien$$kN03$$lBioSoft$$vProgramm Biosoft$$x0$$zentfällt
000004701 9141_ $$y2009
000004701 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000004701 9201_ $$0I:(DE-Juel1)ISB-2-20090406$$d31.12.2010$$gISB$$kISB-2$$lMolekulare Biophysik$$x0
000004701 970__ $$aVDB:(DE-Juel1)111890
000004701 980__ $$aVDB
000004701 980__ $$aConvertedRecord
000004701 980__ $$ajournal
000004701 980__ $$aI:(DE-Juel1)ICS-6-20110106
000004701 980__ $$aUNRESTRICTED
000004701 981__ $$aI:(DE-Juel1)IBI-7-20200312
000004701 981__ $$aI:(DE-Juel1)ICS-6-20110106
000004701 981__ $$aI:(DE-Juel1)ISB-2-20090406