| 001 | 4701 | ||
| 005 | 20200402210447.0 | ||
| 024 | 7 | _ | |2 pmid |a pmid:19238378 |
| 024 | 7 | _ | |2 DOI |a 10.1007/s00249-009-0410-8 |
| 024 | 7 | _ | |2 WOS |a WOS:000265917300005 |
| 037 | _ | _ | |a PreJuSER-4701 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 570 |
| 084 | _ | _ | |2 WoS |a Biophysics |
| 100 | 1 | _ | |a Artmann, G.M. |b 0 |0 P:(DE-HGF)0 |
| 245 | _ | _ | |a Hemoglobin senses body temperature |
| 260 | _ | _ | |a Berlin |b Springer |c 2009 |
| 300 | _ | _ | |a 589 - 600 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |a European Biophysics Journal : with Biophysics Letters |x 0175-7571 |0 10441 |v 38 |
| 500 | _ | _ | |a This work was supported by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia to G. M. |
| 520 | _ | _ | |a When aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). In conclusion: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins. |
| 536 | _ | _ | |a Programm Biosoft |c N03 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK443 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Body Temperature |
| 650 | _ | 2 | |2 MeSH |a Erythrocyte Volume |
| 650 | _ | 2 | |2 MeSH |a Hemoglobins: chemistry |
| 650 | _ | 2 | |2 MeSH |a Hemoglobins: metabolism |
| 650 | _ | 2 | |2 MeSH |a Humans |
| 650 | _ | 2 | |2 MeSH |a Magnetic Resonance Spectroscopy |
| 650 | _ | 2 | |2 MeSH |a Osmotic Pressure |
| 650 | _ | 2 | |2 MeSH |a Phase Transition |
| 650 | _ | 2 | |2 MeSH |a Temperature |
| 650 | _ | 2 | |2 MeSH |a Water: metabolism |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Hemoglobins |
| 650 | _ | 7 | |0 7732-18-5 |2 NLM Chemicals |a Water |
| 650 | _ | 7 | |a J |2 WoSType |
| 653 | 2 | 0 | |2 Author |a Red blood cells |
| 653 | 2 | 0 | |2 Author |a Hemoglobin |
| 653 | 2 | 0 | |2 Author |a Temperature transition |
| 653 | 2 | 0 | |2 Author |a Body temperature |
| 653 | 2 | 0 | |2 Author |a Colloid osmotic pressure |
| 653 | 2 | 0 | |2 Author |a Confined water |
| 653 | 2 | 0 | |2 Author |a Glass transition |
| 653 | 2 | 0 | |2 Author |a NMR T-1 |
| 700 | 1 | _ | |a Digel, I. |b 1 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Zerlin, K.F. |b 2 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Maggakis-Kelemen, Ch. |b 3 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Linder, Pt. |b 4 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Porst, D. |b 5 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Stadler, A.M. |b 6 |u FZJ |0 P:(DE-Juel1)VDB78506 |
| 700 | 1 | _ | |a Kayser, P. |b 7 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Dikta, G. |b 8 |0 P:(DE-HGF)0 |
| 700 | 1 | _ | |a Temiz Artmann, A. |b 9 |0 P:(DE-HGF)0 |
| 773 | _ | _ | |a 10.1007/s00249-009-0410-8 |g Vol. 38, p. 589 - 600 |p 589 - 600 |q 38<589 - 600 |0 PERI:(DE-600)1398349-0 |t European biophysics journal |v 38 |y 2009 |x 0175-7571 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1007/s00249-009-0410-8 |
| 909 | C | O | |o oai:juser.fz-juelich.de:4701 |p VDB |
| 913 | 1 | _ | |k N03 |v Programm Biosoft |l BioSoft |b Schlüsseltechnologien |z entfällt |0 G:(DE-Juel1)FUEK443 |x 0 |
| 914 | 1 | _ | |y 2009 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
| 920 | 1 | _ | |k ISB-2 |l Molekulare Biophysik |d 31.12.2010 |g ISB |0 I:(DE-Juel1)ISB-2-20090406 |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)111890 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 981 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
| 981 | _ | _ | |a I:(DE-Juel1)ISB-2-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|