001     4701
005     20200402210447.0
024 7 _ |2 pmid
|a pmid:19238378
024 7 _ |2 DOI
|a 10.1007/s00249-009-0410-8
024 7 _ |2 WOS
|a WOS:000265917300005
037 _ _ |a PreJuSER-4701
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Artmann, G.M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Hemoglobin senses body temperature
260 _ _ |a Berlin
|b Springer
|c 2009
300 _ _ |a 589 - 600
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a European Biophysics Journal : with Biophysics Letters
|x 0175-7571
|0 10441
|v 38
500 _ _ |a This work was supported by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia to G. M.
520 _ _ |a When aspirating human red blood cells (RBCs) into 1.3 mum pipettes (DeltaP = -2.3 kPa), a transition from blocking the pipette below a critical temperature T(c) = 36.3 +/- 0.3 degrees C to passing it above the T(c) occurred (micropipette passage transition). With a 1.1 mum pipette no passage was seen which enabled RBC volume measurements also above T(c). With increasing temperature RBCs lost volume significantly faster below than above a T(c) = 36.4 +/- 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25 degrees C < or = T < or = 39.5 degrees C) showed a T (c) at 37.1 +/- 0.2 degrees C above which the COP rapidly decreased (COP transition). In NMR T(1)-relaxation time measurements, the T(1) of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T(c) = 37 +/- 1 degrees C at a rate of 0.023 s/K into zero slope above T(c) (RBC T(1) transition). In conclusion: An amorphous hemoglobin-water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T(c), a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T(c) close to body temperature. The T(c) is moved +0.8 degrees C to higher temperatures when a D(2)O buffer is used. We suggest a mechanism similar to a "glass transition" or a "colloidal phase transition". At T(c), the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins.
536 _ _ |a Programm Biosoft
|c N03
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK443
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Body Temperature
650 _ 2 |2 MeSH
|a Erythrocyte Volume
650 _ 2 |2 MeSH
|a Hemoglobins: chemistry
650 _ 2 |2 MeSH
|a Hemoglobins: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Spectroscopy
650 _ 2 |2 MeSH
|a Osmotic Pressure
650 _ 2 |2 MeSH
|a Phase Transition
650 _ 2 |2 MeSH
|a Temperature
650 _ 2 |2 MeSH
|a Water: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Hemoglobins
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Red blood cells
653 2 0 |2 Author
|a Hemoglobin
653 2 0 |2 Author
|a Temperature transition
653 2 0 |2 Author
|a Body temperature
653 2 0 |2 Author
|a Colloid osmotic pressure
653 2 0 |2 Author
|a Confined water
653 2 0 |2 Author
|a Glass transition
653 2 0 |2 Author
|a NMR T-1
700 1 _ |a Digel, I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Zerlin, K.F.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Maggakis-Kelemen, Ch.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Linder, Pt.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Porst, D.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Stadler, A.M.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB78506
700 1 _ |a Kayser, P.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Dikta, G.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Temiz Artmann, A.
|b 9
|0 P:(DE-HGF)0
773 _ _ |a 10.1007/s00249-009-0410-8
|g Vol. 38, p. 589 - 600
|p 589 - 600
|q 38<589 - 600
|0 PERI:(DE-600)1398349-0
|t European biophysics journal
|v 38
|y 2009
|x 0175-7571
856 7 _ |u http://dx.doi.org/10.1007/s00249-009-0410-8
909 C O |o oai:juser.fz-juelich.de:4701
|p VDB
913 1 _ |k N03
|v Programm Biosoft
|l BioSoft
|b SchlĂĽsseltechnologien
|z entfällt
|0 G:(DE-Juel1)FUEK443
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISB-2
|l Molekulare Biophysik
|d 31.12.2010
|g ISB
|0 I:(DE-Juel1)ISB-2-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)111890
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ISB-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21