000004703 001__ 4703
000004703 005__ 20240712101004.0
000004703 0247_ $$2WOS$$aWOS:000263642000024
000004703 0247_ $$2Handle$$a2128/10167
000004703 037__ $$aPreJuSER-4703
000004703 041__ $$aeng
000004703 082__ $$a550
000004703 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000004703 1001_ $$0P:(DE-HGF)0$$aFry, J.L.$$b0
000004703 245__ $$aOrganic nitrate and secondary organic aerosol yield from NO3 oxidation of ß-pinene evaluated using a gas-phase kinetics/aerosol partitioning model
000004703 260__ $$aKatlenburg-Lindau$$bEGU$$c2009
000004703 300__ $$a1431 - 1449
000004703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004703 3367_ $$2DataCite$$aOutput Types/Journal article
000004703 3367_ $$00$$2EndNote$$aJournal Article
000004703 3367_ $$2BibTeX$$aARTICLE
000004703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004703 3367_ $$2DRIVER$$aarticle
000004703 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v9$$x1680-7316
000004703 500__ $$aThe Berkeley authors were supported by NSF ATM-0639847 and NSF ATM-0511829. The authors thank Luke Valin for assistance running WRF/Chem; Klaus Scott for providing California monoterpene emissions estimates; Steve Ball and Bill Simpson for helpful comments on the manuscript; and the entire SAPHIR NO<INF>3</INF> intercomparison campaign team, June 2007 at Forschungszentrum Julich, for their support of these experiments. This work was a joint activity of the European Network of Excellence ACCENT ( contract no: GOCE CT-2004-505337) and EUROCHAMP.
000004703 520__ $$aThe yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+beta-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Julich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5 < 10 ppb) and beta-pinene (peak similar to 15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (similar to 50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of p(vap) similar to 5x10(-6) Torr (6.67x10(-4) Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+beta-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5-8% of the global total) of organic aerosol on regional and global scales.
000004703 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000004703 588__ $$aDataset connected to Web of Science
000004703 650_7 $$2WoSType$$aJ
000004703 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b1$$uFZJ
000004703 7001_ $$0P:(DE-HGF)0$$aRollins, A.W.$$b2
000004703 7001_ $$0P:(DE-HGF)0$$aWooldridge, P.J.$$b3
000004703 7001_ $$0P:(DE-HGF)0$$aBrown, S.S.$$b4
000004703 7001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b5$$uFZJ
000004703 7001_ $$0P:(DE-HGF)0$$aDube, W.$$b6
000004703 7001_ $$0P:(DE-Juel1)VDB66036$$aMensah, A.$$b7$$uFZJ
000004703 7001_ $$0P:(DE-Juel1)VDB46017$$aDal Maso, M.$$b8$$uFZJ
000004703 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b9$$uFZJ
000004703 7001_ $$0P:(DE-Juel1)16317$$aDorn, H.-P.$$b10$$uFZJ
000004703 7001_ $$0P:(DE-Juel1)16306$$aBrauers, T.$$b11$$uFZJ
000004703 7001_ $$0P:(DE-HGF)0$$aCohen, R.C.$$b12
000004703 773__ $$0PERI:(DE-600)2069847-1$$gVol. 9, p. 1431 - 1449$$p1431 - 1449$$q9<1431 - 1449$$tAtmospheric chemistry and physics$$v9$$x1680-7316$$y2009
000004703 8564_ $$uhttps://juser.fz-juelich.de/record/4703/files/acp-9-1431-2009.pdf$$yOpenAccess
000004703 8564_ $$uhttps://juser.fz-juelich.de/record/4703/files/acp-9-1431-2009.gif?subformat=icon$$xicon$$yOpenAccess
000004703 8564_ $$uhttps://juser.fz-juelich.de/record/4703/files/acp-9-1431-2009.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000004703 8564_ $$uhttps://juser.fz-juelich.de/record/4703/files/acp-9-1431-2009.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000004703 8564_ $$uhttps://juser.fz-juelich.de/record/4703/files/acp-9-1431-2009.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000004703 909CO $$ooai:juser.fz-juelich.de:4703$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000004703 9141_ $$y2009
000004703 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000004703 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000004703 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000004703 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000004703 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000004703 970__ $$aVDB:(DE-Juel1)111892
000004703 9801_ $$aUNRESTRICTED
000004703 9801_ $$aFullTexts
000004703 980__ $$aVDB
000004703 980__ $$aConvertedRecord
000004703 980__ $$ajournal
000004703 980__ $$aI:(DE-Juel1)IEK-8-20101013
000004703 980__ $$aUNRESTRICTED
000004703 981__ $$aI:(DE-Juel1)ICE-3-20101013
000004703 981__ $$aI:(DE-Juel1)IEK-8-20101013