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Dynamic regimes of fluids simulated by multiparticle-collision dynamics
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We investigate the hydrodynamic properties of a fluid simulated with a mesoscopic solvent model. Two
distinct regimes are identified, the “particle regime” in which the dynamics is gaslike and the “collective
regime” where the dynamics is fluidlike. This behavior can be characterized by the Schmidt number, which
measures the ratio between viscous and diffusive transport. Analytical expressions for the tracer diffusion
coefficient, which have been derived on the basis of a molecular-chaos assumption, are found to describe the
simulation data very well in the particle regime, but important deviations are found in the collective regime.
These deviations are due to hydrodynamic correlations. The model is then extended in order to investigate
self-diffusion in colloidal dispersions. We study first the transport properties of heavy pointlike particles in the
mesoscopic solvent, as a function of their mass and number density. Second, we introduce excluded-volume
interactions among the colloidal particles and determine the dependence of the diffusion coefficient on the
colloidal volume fraction for different solvent mean-free paths. In the collective regime, the results are found
to be in good agreement with previous theoretical predictions based on Stokes hydrodynamics and the Smolu-

chowski equation.
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I. INTRODUCTION

The dynamics of complex fluids such as colloidal suspen-
sions, dilute or semidilute polymer solutions, biological mac-
romolecules, membranes, and aqueous surfactant solutions,
is often governed by the hydrodynamic behavior of the sol-
vent. Due to a large separation of length and time scales
between the atomic scale of the solvent molecules and the
mesoscopic scale of the solute, direct simulation approaches
with explicit atomistic solvent are prohibitively costly in
computer time. Therefore, several mesoscale simulation
techniques have been developed in recent years in order to
bridge the length- and time-scale gap. In particular, lattice-
gas automata (LGA) [1,2], lattice Boltzmann (LB) [3-5],
smoothed-particle hydrodynamics (SPH) [6,7], dissipative
particle dynamics (DPD) [8-10], direct simulation Monte
Carlo (DSMC) [11,12], fluid particle dynamics [13], and oth-
ers, have been investigated. The basic idea of all these ap-
proaches is very similar: To obtain hydrodynamic behavior
on length scales much larger than the atomic scale, the de-
tailed interactions and dynamics of the solvent molecules are
not important; instead mass and momentum conservation are
the essential ingredients to obtain the correct hydrodynamic
behavior. Therefore, the dynamics on the microscopic scale
can be strongly simplified, as long as the conservation laws
are strictly satisfied. The different methods listed above dif-
fer in the way the solvent dynamics is implemented.

Two main classes of mesoscopic simulation techniques
can be distinguished, which are lattice and off-lattice meth-
ods. Lattice gas and lattice Boltzmann methods fall into the
first class, while direct simulation Monte Carlo, dissipative
particle dynamics, and fluid particle dynamics fall into the
second class. Off-lattice approaches have the advantage that
Galilean invariance is typically satisfied. Moreover, the inter-
action of the off-lattice solvent with solutes such as colloids,
polymers, and membranes can be taken into account more
naturally.
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The mesoscale simulation technique, which we are inves-
tigating in this paper, was introduced by Malevanets and
Kapral [14] a few years ago. It is a variant of the DSMC
method, in which binary collisions are replaced by multipar-
ticle collisions in a prescribed collision volume. This method
has been called multiparticle-collision dynamics (MPCD) or
stochastic rotation dynamics (SRD). It employs a discrete-
time dynamics with continuous velocities and local multipar-
ticle collisions. Mass and momentum are conserved quanti-
ties and it has been demonstrated that the hydrodynamic
equations are satisfied [14,15].

Certain transport coefficients, in particular the viscosity,
of this solvent model have been studied intensively. Analyti-
cal expressions have been derived from kinetic theory by
generalizing pointlike collisions to finite collision volumes
[16—19]. The theoretical expressions describe numerical re-
sults very well.

In this article, we study the transport coefficients as a
function of the parameters of the MPCD fluid, in particular
the mean free path in units of the size of the collision vol-
ume. We find two distinct regimes, in which the dynamics is
either gaslike or fluidlike. This behavior can be characterized
by the Schmidt number, which measures the ratio between
viscous and diffusive transport. We find that MPCD allows
us to tune the fluid behavior such that large Schmidt numbers
are obtained and momentum transport dominates over mass
transport. Analytical expressions [ 17—19] for the tracer diffu-
sion coefficient, which have been derived on the basis of a
molecular-chaos assumption, are found to describe the simu-
lation data very well for large mean free paths, but fail in the
fluid regime. The reason is a build-up of correlations among
the fluid particles by hydrodynamic interactions, which leads
to enhanced diffusion coefficients. We will show that the
latter leads to nonexponentially decaying velocity-
autocorrelation functions at small mean free paths. Indepen-
dent of the mean free path, we find that the algorithm repro-
duces the algebraic long-time decay typical in fluids.
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In a further step, we investigate the diffusion of a heavy
tracer particle in a MPCD solvent. It is very important to
understand the contribution of the solvent dynamics on the
solute diffusion. Two limiting situations are found: either
Brownian or hydrodynamic behavior, depending on the col-
lision time and the rotation angle. We explore the range of
parameters where these different dynamical behaviors ap-
pear, and show how they emerge from the mesoscopic dy-
namics.

Finally, we study self-diffusion in colloidal dispersions
with excluded-volume interactions as a function of the vol-
ume fraction. To this end, the MPCD method is combined
with molecular dynamic simulations. We find that such a
hybrid model displays the proper dynamics for the same pa-
rameter regime where the hydrodynamic behavior is found
for the fluid. Our results in the collective regime are in good
agreement with previous theoretical predictions based on
Stokes hydrodynamics and the Smoluchowski equation [20].

II. THE MODEL

The fluid is modeled by N point particles, which are de-
termined by their positions r; and velocities v;, with i
=1,...,N. Positions and velocities are continuous variables,
which evolve in discrete increments of time. The mass m
associated with the particles is taken to be the same, but
more generally, different masses can be assigned. The algo-
rithm consists of two steps, streaming and collision. In the
streaming step the particles move ballistically according to
their velocities during a time increment £, to which we will
refer as collision time. Thereby, the evolution rule is

ri(t+h)=r ) +hv(r). (1)

In the collision step, the particles are sorted into collision
boxes, and interact with all other particles in the same colli-
sion box. The collision boxes are typically the unit cells of a
d-dimensional cubic lattice with lattice constant a, although
other geometries would be possible. The collision is then
defined as a rotation of the velocities of all particles in a box
in a comoving frame with its center of mass. Thus, the ve-
locity of the ith particle after the collision is

Vilt +h) = Ve (1) + R(@)[Vi(t) = Ve i(D)], 2)

where R(a) is a stochastic rotation matrix and v, ,(¢)
:EE"’)(mvj)/ 2;m is the velocity of the center of mass of all
particles j, which are located in the collision box of particle
i at time ¢. The conservation of local momentum and kinetic
energy is guaranteed by construction. In two dimensions, the
rotation of the relative velocity is simply given by an angle
+a. Here « is a parameter of the model; the sign is chosen
randomly for each cell. In three dimensions, various schemes
for the random collisions are possible [14,18,21]. The one
employed in this paper consist in choosing a random direc-
tion in space for each box around which the relative veloci-
ties are rotated by an angle «. A detailed explanation of the
implementation is given in Ref. [21].

In order to ensure Galilean invariance for the full range of
parameters, a random shift of the collision grid has to be
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TABLE I. Summary of relevant parameters for the simple fluid
with the MPCD model.

Parameters

a: Collision box size

m: Mass of the fluid particle

T: Temperature

h: Collision time

«: Rotation angle

L: Linear system size

N: Total number of particles

©: Mass density, ©@=Nm/L?

A A=h\kgT/m
Dimensionless quantities

: Mean free path,

Decorrelation factor, y=(2/3)(1-cos a)(p—1)/p
Particles per cell, p=ga?/m=N(a/L)?
: Scaled mean free path, A\=A/a

7R R

performed in the execution of the collision step [16,22]. As a
consequence of such a shift, the collision environment of
each particle is independent of the average local velocity, and
no special reference frame exists. Random shifts also facili-
tate the transfer of momentum between neighboring par-
ticles.

In the simulations, N particles are initially placed at ran-
dom in a cubic system of linear extension L. The average
number of particles in a collision box is p=N(a/L), the
scaled number density. Starting from an arbitrary distribution
of velocities, only a few steps are required to reach the Max-
well Boltzmann velocity distribution. The equilibrium tem-
perature 7 is then given by the average kinetic energy
m(v?)=3kyT, where kg is the Boltzmann constant. In the
simulations, we scale length and time according to X=x/a
and f=t\VkzT/ma®, which corresponds to the choice m=1,
a=1, and kzgT=1 of reference units. The scaled mean free

path is then given by \=h. Basic parameters and the defini-
tions of dimensionless quantities are collected in Table I.

III. DYNAMICAL PROPERTIES

The kinematic viscosity v= 7/ has been calculated theo-
retically [14-19,22,23] by means of kinetic theory and its
validity has been checked with simulations. The total kine-
matic Vviscosity, v=rwvy,+ V., 1S the sum of two contribu-
tions, the kinetic viscosity vy, and the collisional viscosity
Vo, Which have been calculated in two and three dimen-
sions. In three dimensions, the expressions [18,19]

Veoll _l(l—COS a)(l l)
VkgTa*/m IR 18 ’

Vkin 1 5p 1
] =A -1 ®
VkgTa*/m (4-2cosa—-2cos2a)p-1 2

have been derived.
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FIG. 1. Dimensionless kinematic viscosity for the simple fluid
in MPCD. The symbols are the simulation results, the solid line is
the total theoretical prediction, the dotted line is the collisional con-
tribution, and the dashed line the kinetic contribution. In both cases
the system size is L/a=20. (a) « dependence with N=0.2 and p
=10. (b) N\ dependence with a=130 and p=5.

The total kinematic viscosity has been determined nu-
merically by the procedure explained in Ref. [24]. Briefly, a
three-dimensional system is considered with periodic bound-
ary conditions in two dimensions and planar walls in the
third dimension. Stick boundary conditions at the walls are
implemented by considering bounce-back collisions with the
walls. A gravitational field is applied in one direction parallel
to the walls. After a relaxation time, the system reaches a
stationary state with a parabolic velocity profile between the
walls and in the direction of the force. This is Poiseuille flow.
It is known [25] that the measured maximum velocity of the
parabola is inversely proportional to the viscosity of the
fluid. The viscosity data obtained in this way are presented in
Fig. 1 together with the theoretical predictions of Eq. (3).
The obtained agreement is quite remarkable, in contrast to
the case of other mesoscopic simulation techniques such as
dissipative particle dynamics [26]. Density fluctuations can
also be included in the theory [19], which noticeably im-
proves the agreement with the simulations results for small
number densities; for p=5 and p=10, these contributions are
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FIG. 2. Theoretical Schmidt number versus collision time. The
a and p parameters are specified in the plot.

negligible. Alternative methods to determine the viscosity
from simulations have been employed in Refs. [19,17],
where a system under shear flow and vorticity correlations
have been used, respectively.

The ratio between the kinetic and the collisional contribu-
tions to the kinematic viscosity varies considerably with the
model parameters, as can be seen easily from the theoretical
expressions (3). In Fig. 1 the total kinematic viscosity and its
two contributions are plotted as a function of the rotation
angle and the collision time step. The collisional contribution
is dominant for large collision angles and small collision
times, while the kinetic viscosity dominates in the opposite
case of small collision angles and large collision times.

Kinetic transport is due to the movement of the particles
themselves, i.e., when a particle moves it carries a certain
amount of the relevant quantities as momentum and energy,
while collisional transport is due to transfer of energy and
momentum from one particle to another during collisions. In
MPCD, kinetic transport is therefore dominant when the
mean free path is larger than the size of the collision box and
for small values of the rotation angle. If the rotation angle is
small, there is little exchange of momentum between par-
ticles due to collisions. The situation where the kinetic trans-
port dominates is characteristic for gases. In fluids the usual
situation is the opposite, the transport of momentum is
mainly due to collisions.

A convenient measure of the importance of hydrodynam-
ics is the Schmidt number Sc=v/D, where v is the kinematic
viscosity and D the diffusion coefficient. Thus, Sc is the ratio
between momentum transport and mass transport. It is
known that this number for gases is smaller than but on the
order of unity, while in fluids like water it is on the order of
10? to 10%. A prediction for the Schmidt number of a MPCD
fluid can be obtained from the theoretical expressions (3) for
the kinematic viscosity, and the diffusion coefficient, see Eq.
(17) below. In Fig. 2, we plot the theoretical prediction for Sc
as a function of the collision time for different values of the
rotation angle. This shows that Sc becomes considerably
larger than unity for the same range of parameters where the
collisional viscosity is considerably larger than the kinetic
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viscosity (Fig. 1). We will show that the dynamical behavior
in the two limits is fundamentally different. We will call the
parameter region of large rotation angles and small collision
times the “collective regime” and the opposite region the
“particle regime”. This classification has similar conse-
quences as the one introduced in dissipative particle dynam-
ics (DPD) [27], although we do not investigate wavelength
dependent properties here.

IV. SIMPLE FLUID CORRELATIONS

Correlations between particles are responsible for hydro-
dynamic interactions. Therefore, we are interested in charac-
terizing the velocity correlations in a MPCD fluid.

A. Velocity autocorrelation functions

An analytical expression for the velocity autocorrelation
function (VACF) has been derived in Refs. [17,18]. The col-
lision step in Eq. (2) can be rewritten as

vi(nh) =vi((n=1h) + (R(a) - 1)
X[vi((n = 1Dh) = Ve ((n =DM, 4)

where [ is the unit matrix and t=nh is the discretized time,
with n the number of collision steps. By multiplying this
expression with the velocity at time zero and taking thermal
averages, we obtain

(Vinh)v(0)) = (1 = Y, )(vi((n = Dh)v(0))
+ 7a<vc.m.,i((n - l)h)V,(0)> (5)

Here, the rotational average over an arbitrary vector A in
three dimensions is obtained from geometrical arguments to
be

(R(a) =DA)Y=~3(1-cos a)(A) = - y,(A).  (6)

This particular value of vy, arises from the implementation of
the rotation chosen in this paper. The remaining problem is
to calculate the last term in Eq. (5). First, we neglect density
fluctuations in the average of the center of mass velocity,
which yields (Vc'm”,-(nh)>2(2;”")Vj)/ p. Furthermore, a
molecular-chaos assumption implies that

(Vem.il(n = Dh)vi(0)) = %(Vi((n - Dhvi(0)).  (7)

This approximation means that of all the particles in the
collision box of particle i after (n— 1) collisions, only particle
i itself makes a nonzero contribution to the correlation func-
tion. This is the same as assuming that none of the other
particles has any information about the state of particle i at
any time. The correlation at a certain time step can then be
expressed in terms of the previous time step as

Vin)v,(0)) = (1 - %y) V(= DRv(0)).  (8)

This implies that in this approximation, the VACF shows an
exponential decay
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FIG. 3. Normalized velocity autocorrelation function as a func-
tion of the dimensionless time for mean free paths A=1 and X\
=0.1. Dashed lines correspond to the exponential decays in Eq. (9).
In both cases the number density is p=5, the rotation angle «
=130, and the system size L/a=20.
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where the normalization factor follows from the equipartition
theorem <Vl-2(0)>=3kBT/ m. The decorrelation factor 7y is de-
fined as

7z§(1—cos a)(l—i)zyayp. (10)

From Eq. (9), a characteristic time 7,=—h/In(1—7) can be
extracted. Up to this time, the VACF follows the exponential
decay for every set of parameters. However, the collective
phenomena responsible for the hydrodynamic behavior ap-
pear at much later times.

In Fig. 3, simulation results of the VACF are presented for
two different mean free paths N. The theoretical prediction
(9) is also displayed for both values of \. For A=1 the ex-
ponential decay is followed with very good accuracy until
the crossover to the long-time tail behavior occurs. For A\
=0.1 the purely exponential decay is followed only in the
first collision; for long times, a long-time-tail behavior is
observed similarly as for A=1. What is different in this case
is that after the first collision the system enters an interme-
diate regime where the VACF decay is significantly slower
than the one described by the molecular-chaos approxima-
tion but is not yet the algebraic tail. Note that for the inves-
tigated rotation angle of @=130, the mean free path A=1
corresponds to the particle regime, while A=0.1 corresponds
to the collective regime.

It is interesting to note that for short times, the VACF
decays monotonically only in the case that the correlation
parameter 7y is smaller than unity. If y=1, Eq. (9) predicts
that the VACF exhibits damped oscillations. We have
checked that this oscillatory behavior is indeed observed in
the simulations. However, the viscosity curves show no par-
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FIG. 4. Time dependence of the normalized velocity autocorre-
lation function. The parameters are the same as in Fig. 3. The data
are compared with long-time tail prediction #'/3. The amplitude
predicted in Eq. (11) is (within the statistical error) exact for A=1
and about 10% larger for A=0.1.

ticular features when this happens (compare Fig. 1, where
the VACF for p=10 becomes oscillatory for a=132).

B. Long-time tails

It is well known [28-30] that the long-time behavior of
the VACF in d-dimensional fluids in thermal equilibrium
shows a universal behavior. This corresponds to a power-law
tail, for which the explicit form can be calculated from a
mode-coupling theory as [29]

d-1 1
Cv(t)z( dp )[4W(D+V)z]d/2’ (1)

where v and D are the transport coefficients of the fluid.

The results obtained for the long-time behavior of the
VACEF are consistent with the general prediction for fluids in
thermal equilibrium in Eq. (11). The algebraic power 3% is
clearly reproduced in our simulations as can be seen in Fig.
4. The value of the amplitude in Eq. (11) is related to the
kinematic viscosity v and the diffusion coefficient D. Since
both values are known for the MPCD fluid and discussed in
this paper, quantitative comparison can also be performed.
We find that the value for A=1 is exactly reproduced by our
simulations within the accuracy of the results, while the am-
plitude obtained for A=0.1 is about 10% smaller than the
theoretic prediction. Thle and Kroll [16] obtain good agree-
ment in a two-dimensional MPCD fluid with the expected 7!
behavior over a comparable time window.

The effect of finite system size can be seen in Fig. 4 for
times 7= 20, where the VACF crosses over from the alge-
braic to a faster, exponential decay. This effect is similar to
that observed for the time dependence of the temperature
autocorrelation function for a random-solid dissipative-
particle-dynamics system [31]. There, it can be proved that
the correlations decay faster after a time, where hydrody-
namic modes become relevant which are truncated by the
system size.
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C. Importance of many-body correlations

In the previous section, an exponential decay of the VACF
has been theoretically predicted. This behavior is a conse-
quence of the approximation in Eq. (7) which neglects any
correlation among the particles in the same collision box at
all times. In order to improve Eq. (7), we have to go beyond
the molecular-chaos approximation. This is a formidable
task. We start the procedure by calculating the center-of-
mass correlation average for the first collision and, consecu-
tively, the second and so on. For n=1 the approximation in
Eq. (7) is exact <Vc_m_’[(O)Vi(0)>=<Vl-2(0)>/p. This is the reason
why for the first time step, C,(h) agrees perfectly in all simu-
lations. For n=2 it reads

(,1)
Ve 040D = 3 {v0) + (Ria) -1
J

X[V{(0) = Ve j(0)T}vi(0))
1 y (i,1) (j.0)
= ;(1 ~ Y )0} (0)) + p—;’E > (vi(0)v;(0))
ik

= (“—”’ﬂ—;a)@?(o», (12)
p P

where {; denotes the number of particles that are neighbors
of particle i at both times r=h and t=0. We use the term
“neighbors” for particles within the same collision box. The
approximation in Eq. (7) is recovered for {;=1. This is the
case when only the actual particle is considered to be in both
collision boxes. As we have seen above, this is not a good
approximation in the collective regime.

We denote the average number of remaining neighbors
that one particle is revisiting after n collisions as {,. This
number could in principle be calculated analytically by
probabilistic arguments, but in order to get a flavor of the
improvement that such numbers produce in the theory, we
determine ¢, numerically in our simulations. As expected,
these numbers strongly depend on the system parameters. A
detailed study has not been performed, but we have observed
that the number of remaining neighbors seems to be a uni-
versal function of the root-mean-square displacement of the
tagged particle.

The measured numbers ¢, are presented in Fig. 5 as a
function of the root-mean-square displacement {(r(2)
—r(0)»)"2=6Dt, where D is the diffusion coefficient and

t=nh. The diffusion coefficient is the one obtained from the
analytical expression which will be deduced in the next sec-
tion [see Eq. (17)]. The data for different mean free paths
seem to fall onto a single master curve with reasonable ac-
curacy. When the numerical values of D (discussed in the
next section) are used instead of the theoretical result, the
data collapse becomes even more accurate. For the large
mean free path A=1, the first collision takes place when
V6Dt/a=2, which implies that {;=1 is a good approxima-
tion. Note that in the representation chosen in Fig. 5, {,=1
corresponds to the abscissa. The same displacement for a
small mean free path A=0.1 takes place when the particle has
been involved in 80 collisions on average. The first collision
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FIG. 5. Number of remaining neighbors in a collision box after
n collisions as a function of the root-mean-square displacement.
Solid symbols correspond to p=5, @=130 with mean free path
specified in the legend. Open symbols correspond to p=10, «
=110 with A=0.6 (A) and A=1 (O).

for A=0.1 takes place when the average displacement is
much smaller and many of the particles are still in the same
collision box, which makes {;=1 a bad approximation. In-
deed, we can infer from Fig. 5 that {;=2.1 for A=0.1 and
p=5, and {;=3.5 for A\=0.1 and p=10.

Following the same procedure as employed in Eq. (12),
the velocity correlation function can be calculated for n=3,

2
(Vem.i(2M)v,(0)) = —<v"/(30)> {(1 - 7)(1 -+ %52)

+ Z(l -+ ﬁ((z‘* 542)] . (13)
p p

where 8¢, is determined by

(i,2) (j,1) (1,0)

. 1
L+ 8= —<U?(O)>§ ; % VO, (0).  (14)

This is the number of neighbors of particle i at the two times
t=2h and =0 together with the neighbors of the neighbors,
or the result of ring collisions. Let us consider two particles
i and k, which are in the same collision box at #=2#A but not
at t=0. If one, k, has been neighbor of a third particle j at
t=h and this j was neighbor of i at =0, then this combina-
tion also contributes to the correlation function. To obtain a
reasonable prediction for this number is obviously not trivial.
Furthermore, this relation will become more interconnected
and difficult to predict for further time steps. It can be
checked that with the approximations ¢,=1 and 6£,=0, Eq.
(13) reduces to Eq. (7), and consequently the exponential
decay in Eq. (9) is recovered.

Now we come back to the correlation average in Eq. (5)
which can be expanded with the help of Eq. (4)—without
any approximation—
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FIG. 6. Time dependence of the normalized velocity autocorre-
lation function. The dashed line is the exponential decay in Eq. (9),
crosses (X) are the simulation results and pluses (+) are the pre-
dicted values obtained by employing the ¢, numbers, as indicated in
Eq. (15). The parameters of the simulation are p=10, =110, \
=0.1, and L/a=20. The inset is a zoom into the regime of the first
few collisions.

(vi(nh)v,(0)) = (w;(0))(1 - )"

- YE (1 - ‘y)n_k<vc.m.,i((k_ 1)]’!)Vl(0)>
k=1

(15)

The predictions for short times can be improved compared to
Eq. (9) by employing the results of Egs. (12) and (13) on the
right-hand side of Eq. (15), but setting ,=1 and 8,=0 for
n=3 as before. The result is shown in Fig. 6. We observe
that the prediction for the second collision C,(2h) now
agrees perfectly with the simulation data, which confirms our
arguments. Nevertheless, the prediction for further steps is
still only a small improvement compared to the exponential
decay in Eq. (9).

The most relevant conclusion at this point is that in the
collective regime the MPCD algorithm accounts for many-
body collisions which are crucial for the build-up of correla-
tions. This is known to be the origin of the hydrodynamic
behavior in fluids.

V. SELF-DIFFUSION

We study now the consequences of the different behavior
in the two hydrodynamic regimes, which have been intro-
duced in Sec. II, on the self-diffusion coefficient.

A. Diffusion coefficient

In the Green-Kubo formalism, the self-diffusion coeffi-
cient is given by D:% 0di(v()v(0)). In the case that the
time is discretized the integral has to be replaced by [17,22]
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FIG. 7. Relative deviation AD=(Dg,,— D)/ Dy of the simulated
diffusion coefficient from the Brownian approximation, as a func-
tion of the scaled mean free path . Full circles are simulation
results, the solid line represents the analytical expression of D in
Eq. (17). Simulation parameters are a=130, p=>5, and L/a=20.

D= é[%@z(o»h + > <v(nh)v(0))] h. (16)
n=1

In order to obtain an analytical prediction for the diffusion
coefficient, an expression for (v(nh)v(0)) is required. The
Brownian approximation for the VACF given by Eq. (9)
yields

po=tety(1 1) w

with vy defined in Eq. (10). This expression coincides with
that of Ref. [17] with a different notation.

In the simulations, the diffusion coefficient is determined
by a linear fit of the mean-square displacement for long
times. We have checked that equivalent results for D are also
obtained directly from the VACF by employing Eq. (16).

Figure 7 shows the relative deviation AD=(Dgp,
—Dy)/D, of the diffusion coefficient from the expression
(17). This expression should be a good approximation as
long as the exponential decay (9) of the VACF applies. This
is indeed the case for A >0.6, which means that the long-
time tail for these values has a negligible contribution for the
diffusion coefficient. This is reasonable since the deviation
from the exponential behavior appears when the VACF has
decayed typically by three orders of magnitude (see A=1.0 in
Fig. 3). In contrast, Fig. 7 shows that the deviation from the
Brownian behavior (17) increases with decreasing \ for A
<<0.5. This can be understood from the VACF since for small
N\ the deviation from the exponential decay appears much
earlier. Figure 3 shows that for A=0.1 the VACF has decayed
only by about one order of magnitude when the deviation
starts. This translates into a noticeable increment of the dif-
fusion coefficient. This difference can be understood as a
hydrodynamic enhancement of the diffusion coefficient for
large values of the Schmidt number.
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The diffusion coefficient for a simple MPCD fluid in two
dimensions has been determined by Thle and Kroll [17]. In
their Fig. 15, results for A=0.113 are presented as a function
of the rotation angle; deviations from the theoretical predic-
tion are found for large values of a, which is in the range of
parameters which we identify as the collective regime. They
arrive at a similar conclusion that this is due to multiple
encounters among particles. In three dimensions, some nu-
merical results of the diffusion coefficient have been pre-
sented in Ref. [32], and good agreement with the molecular-
chaos approximation has been found for a large range of
number densities. However, the employed parameters (which
correspond to N>0.5) all belong to the particle regime,
where we argue that a good agreement with the theory
should be expected.

At this stage we come back to the discussion in Sec. III
about the Schmidt number Sc=wv/D. The analytic expression
can be calculated from the viscosity v in Eq. (3) and the
diffusion coefficient in Eq. (17), as was already pointed out
in Refs. [17,33,34]. Note that Sc increases rapidly for small
values N<1 of the mean free path, where Sc~/A~2. This
allows arbitrary large values of the Schmidt number. Al-
though very small values of the collision time significantly
reduce the efficiency of the simulations, there is a range of A
values which are not too small but still display fluid behavior
corresponding to high Sc. On the other hand, the hydrody-
namic enhancement of the diffusion coefficient in the collec-
tive regime leads to values of Sc which are smaller than
predicted by the analytical approximation. By substituting
the numerically determined diffusion coefficient, it can be
checked that Sc is indeed smaller, but still large enough to
display a fluidlike behavior.

B. Continuum time limit

It is interesting to discuss the limit of small collision times
h—0, and small rotation angles «— 0. The leading contri-
butions in the theoretical expressions (3) of the kinetic and
collisional viscosity read in this limit

2
_ m_ve<a_> L M(ﬁ) 18
Veor 36a \ h s Vkin 03')’p az > ( )

with 7, defined in Eq. (10). This result shows that a finite
viscosity is obtained in the continuum limit only if the ratio
o?/h is kept constant. The additive term due to discrete times
in Eq. (17) naturally vanishes in the continuum limit, be-
cause y~ a’.

The expressions (18) for the kinetic and collisional con-
tributions to the viscosity show that the collective regime,
where v, > vy, corresponds to a®>/h>1 in the continuum
limit. In this regime, the leading contribution to the diffusion
coefficient (17) is found to be

3ksT( h
D=2 (—2> (19)
Y \a

The related Schmidt number
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(20)

v 1 m2y2 ( a2>2
c=—=— —
D 108 akgT\ h

can be very large since o/h> 1. This shows that the model
has a proper continuum limit. However, due to the require-
ment of very small collision times, this limit is not very
convenient from a computational point of view.

It is very satisfactory to see that the Stokes-Einstein rela-
tion is satisfied in this case, since the diffusion coefficient is
inversely proportional to the viscosity

kgT . 2a
D=——"—withR=— (21)
67Tp VcollR m™p
and defines an effective particle radius inversely proportional
to the number density. We want to emphasize, however, that
the Stokes-Einstein relation is not only satisfied in the con-
tinuum limit, but always when the additive term 1/2 in Eq.
(17) can be neglected and the collisional dominates the ki-
netic viscosity. In this case, Eq. (21) is also valid.

VI. DYNAMICS OF EMBEDDED PARTICLES

After the behavior of a simple MPCD fluid has been char-
acterized, the next important question is how complex fluids
can be modeled. As first step, we investigate the behavior of
a single heavy pointlike particle, which could represent a
solute particle or a colloidal sphere embedded in a simple
fluid. Also, the monomers in a polymer chain can be repre-
sented as point particles [34-37]. This is a quite convenient
strategy, since the solute-solvent interactions are modeled by
just including the pointlike solute particles in the collision
step. Then we study different concentrations of these heavy
particles.

A. Single heavy tracer particle

For the simulation of heavy pointlike particles embedded
in a solvent, the algorithm is the same as described for the
simple fluid in Sec. II. The only point where the higher mass
plays a role is in the calculation of the velocity of the center
of mass, where the different ‘article masses have to be taken
into account via Vcim.,,«(t)=Ejl")(mjvj)/ 2;m;. In thermal equi-
librium, the average kinetic energy of light and heavy par-
ticles is the same. Therefore, the average momentum of the
heavy particle of mass M is a factor (M/m)'"? larger than the
average momentum of a light particle. This implies that a
heavy particle has a larger contribution in the center-of-mass
velocity than a light particle. Since the center-of-mass veloc-
ity and therefore also the velocities of all particles after the
collision step depends on M and the mass mp of the solvent
particles in a collision cell, the effective coupling between
the solvent and the solute must depend in general on the ratio
M/ (mp).

We denote the heavy particle position and velocity with
capital letters R and V. Of course, all types of particles are
involved in the center-of-mass calculation or other sums over
particles. The VACF can be calculated in the molecular-
chaos approximation as explained in Sec. IV A, except for
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FIG. 8. Time dependence of the normalized velocity autocorre-
lation function for different heavy particles. Simulation parameters
are A=0.1, =130, L/a=20, and p=M/m. Dashed lines are simu-
lation results and the solid line is the molecular-chaos approxima-
tion (24).

the center-of-mass correlation in Eq. (7), which for the heavy
particle yields

(Vem((n=1h)V(0)) = (V((n=1h)V(0))

mp+ M
(22)
because in the collision box of the heavy particle the total

mass is (M +mp). The correlation at time zero depends now
on the heavy particle mass

kgT
V3(0))=3——. 23
(VH(0)) M (23)
By inserting these results in the expression equivalent to Eq.

(5), we obtain the molecular-chaos approximation for the
normalized VACEF of the heavy particle

(V(nh)V(0))
Cylt) = =(1-y", (24)
' (V2(0))
where the decorrelation factor y is now given by
mp
= = N 25
Y=Y Y (25)

and 1y, is defined for one heavy particle in the presence of p
fluid particles, in contrast to y, in Eq. (10), where a fluid
particle is surrounded by (p—1) other fluid particles.

In Fig. 8 results for the normalized VACF of one heavy
particle in the collective regime are presented for different
values of its mass. The solvent mass density has been chosen
to be equal to the solute mass, i.e., p=M/m. In this way, y
=7,/2 and the analytical expression (24) is independent of
the heavy particle mass. Figure 8 shows that after the second
collision all the simulation data exhibit a nonexponential de-
cay. This is not very surprising, since a similar behavior was
observed for the simple fluid in Fig. 3 for parameter values
within the collective regime. A slightly slower decay is dis-
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FIG. 9. Time dependence of the normalized velocity autocorre-
lation function of a heavy particle of mass M=5m for mean free
path A=1 and A=0.1. Dashed lines correspond to the exponential
decays in Eq. (24). In both cases the number density is p=>5 and the
rotation angle a=130. Compare with Fig. 3.

played at lower number density p, but an asymptotic curve is
clearly approached for large values of p. The deviations for
small p are due to the presence of density fluctuations.

The dependence of the VACF of a single heavy tracer
particle of mass M =5m on the mean free path N\ of the sol-
vent is shown in Fig. 9. Corresponding results for the simple
fluid are shown in Fig. 3. For A=0.1, the qualitative behavior
of tracer particles with M=m and M =5m is very similar. The
first collision perfectly follows the molecular-chaos approxi-
mation, followed by a slower-than-exponential decay for in-
termediate times and a crossover to a power-law decay for
long times. However, note that since the exponential decay is
slower for the heavy particle, the deviations from Brownian
behavior appear when the VACF has decayed to approxi-
mately one third of its original value for the employed values
of p and «, while for the simple fluid case the VACF has
decayed to 6% of its original value. This implies that the
hydrodynamic enhancement is more pronounced for particles
of larger mass. For =1, small deviations from the exponen-
tial decay are visible for short times; for long times, the
crossover to the power-law behavior can be seen.

Analytical approximation for the diffusion coefficient can
be calculated similar to Sec. V A. It reads

b= 4 -3) 2

where the decorrelation factor y is now given by Eq. (25).
Simulation results for the diffusion coefficient D,, of a
heavy tracer particle are plotted in Fig. 10 as a function of
the mass M/m, for fixed solvent density p=5 and two dif-
ferent sets of parameters. The agreement of the simulations
with the approximation (26) is again very good for parameter
values within the particle regime, A=1 and a=45, but not
within the collective regime, A=0.1 and a=130. This is the
same behavior as observed in the simple fluid (see Fig. 7)
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FIG. 10. Relative deviation of the simulated diffusion coeffi-
cient Dy, from the Brownian approximation Dy, in Eq. (26), as a
function of the heavy particle mass for p=5. These deviations rep-
resent the hydrodynamic contribution to the diffusion coefficient
Dy=Dy;—Dy in units of the Brownian contribution. Symbols are
simulation results and the dashed line is a guide to the eye which
represents a 75% enhancement of the hydrodynamic term over the
Brownian one.

and indicates again the presence of a hydrodynamic contri-
bution to the diffusion coefficient in the collective regime.
In Fig. 11, the hydrodynamic contribution to the diffusion
coefficient (in units of the Brownian contribution) is plotted
as a function of the scaled mean free path N for a heavy
tracer particle of mass M=5m and for a simple fluid tracer
particle (compare Fig. 7). It can be seen that Dy increases
considerably for small N\ in both cases. This increment is
significantly more pronounced for the heavy particle, which
corresponds to the slower decay of the VACF in Fig. 9 for
the larger mass. A small deviation of the VACF from the
exponential decay was observed in Fig. 9 at short times for
A=1. This deviation translates into the small hydrodynamic
enhancement of the diffusion coefficient of the heavy particle

08 ————F————T1 ]
L A M:Sm A ..

0.6 [ M= m o ]
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9 I ]
S ]
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FIG. 11. Hydrodynamic contribution to the diffusion coefficient
in units of the Brownian contribution as a function of the scaled
mean free path N\. Symbols are simulation measurements, and the
ordinate zero axis represents perfect agreement with the analytical
expression D,. Simulation parameters are a=130, p=5, and L/a
=20. Compare with Fig. 7.
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that can be seen in Fig. 11, even at “large” mean free paths
A=1.

Figure 10 shows that for a fixed density p in the collective
regime, the hydrodynamic enhancement increases with in-
creasing mass of the solute particle until M/m==2p, and then
levels off and becomes independent of the solute mass for
M/m> p. This is consistent with the diffusion behavior of
colloidal spheres, where the diffusion coefficient is indepen-
dent of the mass of the colloidal particles.

Kikuchi et al. [19] determine numerically the friction co-
efficient acting on a particle of mass M and velocity v in a
MPCD solvent. Their simulation results, for a fluid of \
=(.9, compare nicely with the analytical prediction, inde-
pendently on the mass of the particle. However, we want to
point out that this agreement is not very surprising, since
their result is obtained from the velocity autocorrelation
function after the first collision step, where the molecular-
chaos approximation is always exact (see Sec. IV C).

The increase of the hydrodynamic coupling of solute and
solvent with increasing solute mass can be understood as
follows. The relative mass of the solute and solvent particles
appears in the collision step via the calculation of the center-
of-mass velocity. If solute particles have the same mass as
solvent particles and there is a large number of solvent par-
ticles per cell, the solvent particles transfer a large random
momentum to the solute particle. Simultaneously, the effect
of the solute particle momentum on the solvent is small. For
this reason, the hydrodynamic contribution to the diffusion
constant of a particle of equal mass, shown in Fig. 7, is only
of the order of 30% for the largest Schmidt number consid-
ered. In contrast, this hydrodynamic enhancement is 65%
when M/m=p and 75% when M/m=2p, as can be seen in
Fig. 10. A very large mass of the solute particle is not very
convenient either, because it implies a large ballistic regime
and a long diffusion time. Therefore, we conclude that a
mass M/m==p for the solute particle is an optimal choice to
enhance the hydrodynamic coupling between solute and fluid
particles.

B. Finite concentration of heavy pointlike particles

At a finite concentration of solute particles, an important
question is to which extent solute particles build up hydro-
dynamic interactions among themselves through the fluid
particles when simulated with MPCD. We study therefore
systems with different concentrations of heavy particles for
sets of parameters within the particle and the collective re-
gimes, respectively. We address this question by investigat-
ing the tracer-diffusion coefficient.

Simulations with different heavy particle concentrations
are performed by changing the total number N,, of heavy
particles but keeping fixed the volume V=L? and the number
N of solvent particles. The corresponding number density of
heavy particles is defined as ¢=N,,(a/L)?. In Fig. 12, the
diffusion coefficients for three different values of the mean
free path are displayed. Very surprisingly, when the data are
normalized by the corresponding diffusion coefficients in the
limit of vanishing density ¢, all three data sets, which are
both in the particle and the collective regime, collapse onto a
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FIG. 12. Diffusion coefficients for a heavy particle as a function
of the concentration ¢p=N,,(a/L)?, normalized with the diffusion
coefficient Dy, (0) of heavy particles at zero number density. The
dashed line is the analytical approximation from Egs. (26) and (29),
symbols correspond to the simulation data with N\ specified in the
legend. The other parameters are M/m=p=5, a=130, and L/a
=20.

single curve. We recall that the hydrodynamic enhancement
for the diffusion coefficient of a single heavy particle, here
denoted as D,,(0), is quite different among these three values
of \ (see Fig. 11). It can be inferred from the data collapse in
Fig. 12 that there is no extra hydrodynamic contribution
among these heavy particles, which is consistent with the
idea that there is no hydrodynamic screening for point par-
ticles [38,39].

The dependence of the diffusion coefficient on the heavy
particle number density can be understood along the same
lines as for the simple fluid or the single heavy particle. We
assume that in each collision box there is a fixed number of
fluid particles p, but that the number of heavy particles n,
fluctuates from one collision box to another. The probability
P(n) of a given heavy particle to be found in a cell with a
total of n—1 other heavy particles is given by the Poisson
distribution function, P(n)=e %?¢""'/(n-1)!. The corre-
sponding decorrelation factor for a heavy particle in a colli-
sion box with (n—1) other heavy particles and p fluid ones is

v,=1=M/(pm +nM), (27)

compare the definition of y; in Eq. (25) for a single heavy
particle in a collision box. The diffusion coefficient is then
given by Eq. (26), where the decorrelation factor is now y
=Y. 2 P(n)y, In the regime of low number density, ¢
<1, this implies

¥=7(1 = @)y + dy, + O(7)]. (28)

In the special case of p=M/m, the sum can be evaluated
analytically and yields

Y=Yl =(e?+¢p-1)/]. (29)

In Fig. 12 the simulation data for the normalized diffusion
coefficient at different volume fractions are compared with
the theoretical prediction obtained from Eq. (26) with the
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decorrelation function in Eq. (29). It can be seen that this
prediction overestimates the values for the diffusion coeffi-
cients. Further studies are required to understand the origin
of this deviation.

VII. HYBRID DYNAMICS

In order to go one step further in the development of an
efficient simulation technique for suspensions of colloidal
particles with MPCD, we next investigate the effect of
excluded-volume interactions between the heavy particles.
To this end, the MPCD algorithm has to be combined with
standard molecular dynamics (MD) for the solute particles.

A. The Model

We consider a dispersion of spherical colloidal particles in
three dimensions. The interactions of solvent particles among
themselves and with colloids take place in the MPCD colli-
sional step, exactly in the same way as described for the
heavy pointlike particles in Sec. VI A. However, the stream-
ing step (1) is used only for the solvent particles. The posi-
tion update of the colloidal particles is performed in several
MD steps between MPCD collisions. In these MD steps, col-
loids interact via an excluded-volume potential. We use the
truncated repulsive Lennard Jones potential [40]

wl (2] e o=
VRLJ(I/-) _ & R - . +e, rs rmin, (30)

0, 7> Tins
where r is the distance between the centers of the colloidal
particles. The parameter o is related to the particle diameter;
it is chosen to equal the collision box length, o=a, so that
there is typically no more than one colloid particle in each
collision box. The potential strength is taken to be equal to
the thermal energy e=k,T, the cutoff radius is r.,;,=2"%0,
and the mass of the particles is taken to be M =5m. The MD
time steps are integrated with the velocity-Verlet algorithm
[41] with a time step Ar=0.002ve/ma?.

In other words, we consider a system of colloidal particles
interacting through repulsive Lennard Jones potentials whose
positions and velocities evolve in discrete time intervals Az.
This procedure is interrupted every h/Ar steps for the inter-
action with the fluid particles. This interaction is a MPCD
event where solvent and solute particles interchange momen-
tum. This implies that the solvent particles can enter the
cores of the colloidal particles, but the colloids cannot inter-
penetrate each other.

The hybrid model described here is a variant of the model
introduced previously by Malevanets and Kapral [15,42]. In
their model, both the solute-solute and solute-solvent inter-
actions were taken into account through excluded-volume
potentials with MD, and only the solvent-solvent interactions
were mesoscopically described through MPCD. The advan-
tage of the model described here comes from the fact that in
the MD steps just the solute particles are considered. This
leads to a considerable speed up of the simulations.
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FIG. 13. Diffusion coefficient for colloidal particles without sol-
vent as a function of the volume fraction ¢. Symbols are simulation
results, the dashed line corresponds to the analytical prediction (32).
The inset is a zoom over the small values of the diffusion coeffi-
cient, and the solid line is a linear extrapolation for large values
of ¢.

B. Diffusion in colloidal dispersions

We measure the diffusion coefficient of the dispersion
through the mean-square displacement of a tracer particle, as
before. Simulations are performed for different colloidal con-
centrations. The volume fraction of colloidal particles ¢ is
the fraction of the total volume V occupied by the colloidal
particles @=(7/6)02py, Where the effective diameter o is
determined by the Barker-Henderson expression [43]

O = J " a1 —expc VEGUEDL. G1)

0

For our choice of Lennard-Jones parameters, this gives o
=1.0lo. The number density of colloidal particles is py,
=(Ny—1)/V=N,/V, where Ny, is the number of heavy par-
ticles with excluded-volume interactions.

For later comparison and better understanding of our hy-
brid model results, we recall first the basic behavior of a
system with excluded-volume interactions only. In Fig. 13
we show the results for the diffusion coefficient of a MD
simulation of repulsive Lennard-Jones particles. Kinetic
theory for hard spheres predicts in the low-density limit [44]

3 kpT 1
DMD(‘P)z_ - —

. 32
8oz V M py G2

This analytical prediction is depicted in Fig. 13 together with
the simulation results. It can be seen that for small volume
fraction, the ¢! behavior is properly reproduced, while for
large volume fractions a linear behavior can be inferred.

The density dependence of the self-diffusion coefficient of
colloidal hard spheres in a hydrodynamic bath can be found
in Ref. [20],

Dy(¢) = D5(0)[1 - 2.1+ O(¢*)].

The diffusion coefficient now decreases linearly with the vol-
ume fraction, in contrast with the kinetic theory result (32)

(33)
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FIG. 14. Diffusion coefficient as a function of the volume frac-
tion of colloidal particles dispersions interacting with a solvent rep-
resented with MPCD at different collision times. For comparison,
the MD results of Fig. 13 are also plotted.

for a gas of hard spheres. In the calculation of Eq. (33),
Brownian and hydrodynamic terms have to be considered,
and it has been found that the hydrodynamic terms almost
cancel. For a colloidal dispersion in a Brownian bath [20] the
first-order correction in Eq. (33) equals —2.0¢. Thus, no sig-
nificant differences are expected between Brownian and hy-
drodynamic measurements of the diffusion coefficient.

Simulation results with the hybrid method are shown in
Fig. 14. The simulations presented here are performed with
rotation angle a=130, fluid number density p=5, and mass
M=5m of the colloidal particle. We vary the mean free path
between A=0.02 and A=2.0.

In the limit of very small volume fractions, the repulsive
interactions between colloids are negligible, and the colloidal
dispersion will behave as the dispersion of heavy pointlike
particles presented in Secs. VI A and VI B. In this limit, we
know from Eq. (26) that the diffusion coefficient D(0) in-
creases with the mean free path N\ [with D(0)~N\ in the
molecular-chaos approximation]. The decrease of D(¢) with
decreasing N\ displayed in Fig. 14 arises then as a natural
consequence. Furthermore, the MPCD interactions of the
colloid particles with the fluid imply that the self-diffusion
coefficient at small densities does not diverge but goes to
finite value dictated by Eq. (26).

For small but finite volume fractions, in the case of large
values of \, we observe a behavior reminiscent of the ¢!
decay of hard-sphere gases, instead of the linear decrease
expected from Eq. (33). This can be understood since, in the
limit of very large mean free paths, the colloids will essen-
tially interact with each other rather than with the solvent.
This behavior is not seen in experiments of colloidal disper-
sions, because the diffusive length scale is typically much
smaller than the diameter of the particles.

Therefore, the appropriate parameters for the modeling of
colloidal dispersions have again to be chosen in the collec-
tive regime. In Fig. 15, the normalized diffusion coefficient
is shown, where D(0) is extrapolated from the simulated
data. The linear behavior in Eq. (33) is indeed observed for
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FIG. 15. Dependence of the normalized diffusion coefficient on
the volume fraction ¢ of colloidal particles. The same data are
shown as in Fig. 14. The normalization factor D(0) is obtained by
extrapolation of the data to zero volume fraction. The solid line
corresponds to the hydrodynamic prediction in Eq. (33).

the smallest values of the mean free path A=0.02 and A
=0.1, within the accuracy of the simulations. Thus, we find
that in order to obtain the theoretically predicted behavior
(33) from simulation of the MD-MPCD hybrid model, small
values of the mean free path and large values of the rotation
angle a are required, i.e., parameters in the collective re-
gime.

However, an almost identical dependence of the diffusion
coefficient on the volume fraction is predicted theoretically
in the absence of hydrodynamics interactions. In order to
investigate this point in more detail, we have performed
simulations of a hybrid model similar to the one presented
here, but with a completely Brownian solvent. One way of
transforming a MPCD fluid in a Brownian solvent has been
introduced by Kikuchi et al. [45], where the velocities
among all the fluid particles are randomly interchanged after
each MPCD collision step. We propose an alternative method
which does not consider any solvent particles. Instead, at
every h/At steps the MD dynamics is interrupted for a rota-
tion of the (full) velocity of each colloid around a random
axis by and angle «. In this case, the diffusion coefficient at
zero volume fraction D(0) is given by Eq. (26) but the
decorrelation factor is y= vy, with v, of Eq. (6). The simu-
lation results of the dependence of the diffusion coefficient
on the volume fraction are quite similar to those displayed in
Fig. 15. The data for D(¢) follow a linear decay only for
very small values of \, where the friction is large and D(0) is
small enough to represent a fluid. For large values of N, D(¢)
has a concave shape, reminiscent of the (,D‘1 behavior of
gases, similarly as observed for the hydrodynamic simula-
tions.

Simulations with a similar hybrid method of a two-
dimensional colloidal suspension have been reported by
Falck et al. [33]. In the majority of the presented results, they
consider excluded-volume interaction among colloids but not
between colloids and solvent particles. They measure an ap-
parent tracer diffusion coefficient (since the diffusion coeffi-
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cient in two dimensions diverges with increasing system
size) of the colloids for different concentrations. Three dif-
ferent Schmidt numbers are studied. A similar trend in the
data is observed as in our simulations: the normalized diffu-
sion coefficient increases with increasing Schmidt number, in
particular for intermediate values of the volume fraction ¢.
However, our interpretation is different. While Falck et al.
attribute this effect to hydrodynamics, we believe that it is
due to the crossover from gaslike to diffusive behavior of the
colloidal dynamics.

In summary, our hybrid model describes the dynamics of
a dispersion of hard-sphere colloids very well in the collec-
tive regime of the solvent. In the hydrodynamic interaction,
only the leading contribution for large distances is included
in our model. This implies that lubrication forces between
neighboring particles at short distances, as well as the cou-
pling between rotational degrees of freedom, are neglected.
We conclude from the very weak dependence of our results
for the normalized diffusion coefficients on the mean free
path, which controls the strength of the hydrodynamic inter-
action, that our model works very well for not too concen-
trated colloidal dispersions.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have performed a detailed analysis of the
hydrodynamic properties of a fluid simulated with MPCD.
We identify two hydrodynamic regimes in terms of the pa-
rameters of the MPCD algorithm. The particle regime is
characterized by dynamical properties being closer to those
of a gas than to those of a liquid. The Schmidt number is
small and the dominant transport mechanism is kinetic trans-
port. This is the regime obtained for large values of the col-
lision time and/or small values of the rotation angle. The
second and more relevant regime for fluid simulations is the
collective regime. In this regime the Schmidt number is large
and collisional transport dominates over kinetic transport—
this characterizes liquidlike behavior. These properties are
obtained for large values of the rotation angle and small val-
ues of the collision time.

Different quantities have been measured in both regimes.
The main conclusion is that the diffusion coefficient shows a
hydrodynamic enhancement in the collective regime. In the
study of the VACF we observe that the behavior can be un-
derstood in both regimes as an exponentially decay for short
times and algebraic decay for long times. In the particle re-
gime, a simple crossover between both behaviors is observed
while an extra intermediate behavior is displayed in the col-
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lective regime. This intermediate behavior of the VACF is
typically a slower than the initial exponential decay. We have
shown that the origin of this intermediate decay region is due
to the build-up of correlations by many-body collisions,
which is in conceptual agreement with the hydrodynamic
behavior. The theoretical predictions for the diffusion coeffi-
cient are based on a molecular-chaos assumption, which
gives an exponential decay of the VACF. Consequently, a
deviation from the theoretical prediction is found in the col-
lective regime. This deviation can be understood as a hydro-
dynamic contribution to the Brownian value.

In a further step, we have investigated the differences be-
tween the particle and the collective regime for complex flu-
ids. We have studied the behavior of heavy particles embed-
ded in the MPCD fluid which can represent solute or
colloidal particles dissolved in a simple fluid. This study
demonstrates that optimal hydrodynamic coupling occurs
when the mass of the tagged particle is on the order of the
solvent mass in a collision cell.

In order to describe colloidal dispersions at finite volume
fractions, it is necessary to account for excluded volume in-
teractions among colloidal particles. To this end, a hybrid
model was studied, which combines MPCD for the solvent
with MD simulations for the colloidal particles. We show
that only for parameters within the collective regime does the
hybrid model reproduce the proper hydrodynamic behavior.
In this case, the results agree well with the theoretical calcu-
lations with and without hydrodynamic interactions, as well
as with experimental results.

A more precise modeling of colloidal particles would re-
quire new interactions among fluid and colloids such that
fluid particles would not freely travel through colloidal par-
ticles and eventually angular momentum could be inter-
changed among them. In the future, it will be interesting to
explore in which applications a more detailed description of
colloidal interactions is necessary, as compared to our sim-
plified model which allows more particles and larger system
sizes, and is therefore well suited to study cooperative phe-
nomena.
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