000047111 001__ 47111
000047111 005__ 20180210121733.0
000047111 0247_ $$2pmid$$apmid:17078046
000047111 0247_ $$2DOI$$a10.1002/jmri.20777
000047111 0247_ $$2WOS$$aWOS:000242562000012
000047111 037__ $$aPreJuSER-47111
000047111 041__ $$aeng
000047111 082__ $$a610
000047111 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000047111 1001_ $$0P:(DE-HGF)0$$aAcosta, R. H.$$b0
000047111 245__ $$aControlling diffusion of 3He by buffer gases: a structural contrast agent in lung MRI
000047111 260__ $$aNew York, NY$$bWiley-Liss$$c2006
000047111 300__ $$a1291 - 1297
000047111 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047111 3367_ $$2DataCite$$aOutput Types/Journal article
000047111 3367_ $$00$$2EndNote$$aJournal Article
000047111 3367_ $$2BibTeX$$aARTICLE
000047111 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047111 3367_ $$2DRIVER$$aarticle
000047111 440_0 $$09910$$aJournal of Magnetic Resonance Imaging$$v24$$x1053-1807$$y6
000047111 500__ $$aRecord converted from VDB: 12.11.2012
000047111 520__ $$aTo study the influence of admixing inert buffer gases to laser-polarized (3)He in terms of resulting diffusion coefficients and the consequences for image contrast and resolution.The diffusion coefficient of (3)He was altered by admixing buffer gases of various molecular weights ((4)He, N(2), and SF(6)). The influence of the pulse sequence and the diffusion coefficient on the appearance of MRI of (laser-polarized) gases was analyzed by comparison of basic theoretical concepts with demonstrative experiments.Excellent agreement between theoretical description and observed signal in simple gradient echoes was observed. A maximum signal gain can be predicted and was experimentally validated. Images acquired under such conditions revealed improved resolution. The nature and concentration of the admixed gas defines a structural threshold for the observed apparent diffusion coefficient (ADC) as demonstrated with diffusion-weighted MRI on a pig's lung flooded with suitable gas mixtures.A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. Their molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this enables images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.
000047111 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000047111 588__ $$aDataset connected to Web of Science, Pubmed
000047111 650_2 $$2MeSH$$aContrast Media: chemistry
000047111 650_2 $$2MeSH$$aDiffusion Magnetic Resonance Imaging: instrumentation
000047111 650_2 $$2MeSH$$aDiffusion Magnetic Resonance Imaging: methods
000047111 650_2 $$2MeSH$$aGases: chemistry
000047111 650_2 $$2MeSH$$aGases: diagnostic use
000047111 650_2 $$2MeSH$$aHelium: chemistry
000047111 650_2 $$2MeSH$$aHelium: diagnostic use
000047111 650_2 $$2MeSH$$aHumans
000047111 650_2 $$2MeSH$$aImage Enhancement: methods
000047111 650_2 $$2MeSH$$aIsotopes: chemistry
000047111 650_2 $$2MeSH$$aIsotopes: diagnostic use
000047111 650_2 $$2MeSH$$aLung: anatomy & histology
000047111 650_2 $$2MeSH$$aLung: chemistry
000047111 650_2 $$2MeSH$$aPhantoms, Imaging
000047111 650_2 $$2MeSH$$aReproducibility of Results
000047111 650_2 $$2MeSH$$aSensitivity and Specificity
000047111 650_7 $$00$$2NLM Chemicals$$aContrast Media
000047111 650_7 $$00$$2NLM Chemicals$$aGases
000047111 650_7 $$00$$2NLM Chemicals$$aIsotopes
000047111 650_7 $$07440-59-7$$2NLM Chemicals$$aHelium
000047111 650_7 $$2WoSType$$aJ
000047111 65320 $$2Author$$agas MRI
000047111 65320 $$2Author$$arestricted diffusion
000047111 65320 $$2Author$$alung
000047111 65320 $$2Author$$abuffer gas
000047111 65320 $$2Author$$acontrast
000047111 7001_ $$0P:(DE-Juel1)VDB49819$$aBlümler, P.$$b1$$uFZJ
000047111 7001_ $$0P:(DE-HGF)0$$aAgulles-Petrós, L.$$b2
000047111 7001_ $$0P:(DE-HGF)0$$aMorbach, A. E.$$b3
000047111 7001_ $$0P:(DE-HGF)0$$aSchmiedeskamp, J.$$b4
000047111 7001_ $$0P:(DE-HGF)0$$aHerweling, A.$$b5
000047111 7001_ $$0P:(DE-HGF)0$$aWolf, U.$$b6
000047111 7001_ $$0P:(DE-HGF)0$$aScholz, A.$$b7
000047111 7001_ $$0P:(DE-HGF)0$$aSchreiber, W. G.$$b8
000047111 7001_ $$0P:(DE-HGF)0$$aHeil, W.$$b9
000047111 7001_ $$0P:(DE-HGF)0$$aThelen, M.$$b10
000047111 7001_ $$0P:(DE-HGF)0$$aSpies, H.-W.$$b11
000047111 773__ $$0PERI:(DE-600)1497154-9$$a10.1002/jmri.20777$$gVol. 24, p. 1291 - 1297$$p1291 - 1297$$q24<1291 - 1297$$tJournal of magnetic resonance imaging$$v24$$x1053-1807$$y2006
000047111 8567_ $$uhttp://dx.doi.org/10.1002/jmri.20777
000047111 909CO $$ooai:juser.fz-juelich.de:47111$$pVDB
000047111 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000047111 9141_ $$y2006
000047111 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000047111 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000047111 970__ $$aVDB:(DE-Juel1)74248
000047111 980__ $$aVDB
000047111 980__ $$aConvertedRecord
000047111 980__ $$ajournal
000047111 980__ $$aI:(DE-Juel1)IBG-2-20101118
000047111 980__ $$aUNRESTRICTED
000047111 981__ $$aI:(DE-Juel1)IBG-2-20101118
000047111 981__ $$aI:(DE-Juel1)ICG-3-20090406