001     47111
005     20180210121733.0
024 7 _ |2 pmid
|a pmid:17078046
024 7 _ |2 DOI
|a 10.1002/jmri.20777
024 7 _ |2 WOS
|a WOS:000242562000012
037 _ _ |a PreJuSER-47111
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Acosta, R. H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Controlling diffusion of 3He by buffer gases: a structural contrast agent in lung MRI
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2006
300 _ _ |a 1291 - 1297
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Magnetic Resonance Imaging
|x 1053-1807
|0 9910
|y 6
|v 24
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a To study the influence of admixing inert buffer gases to laser-polarized (3)He in terms of resulting diffusion coefficients and the consequences for image contrast and resolution.The diffusion coefficient of (3)He was altered by admixing buffer gases of various molecular weights ((4)He, N(2), and SF(6)). The influence of the pulse sequence and the diffusion coefficient on the appearance of MRI of (laser-polarized) gases was analyzed by comparison of basic theoretical concepts with demonstrative experiments.Excellent agreement between theoretical description and observed signal in simple gradient echoes was observed. A maximum signal gain can be predicted and was experimentally validated. Images acquired under such conditions revealed improved resolution. The nature and concentration of the admixed gas defines a structural threshold for the observed apparent diffusion coefficient (ADC) as demonstrated with diffusion-weighted MRI on a pig's lung flooded with suitable gas mixtures.A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. Their molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this enables images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Contrast Media: chemistry
650 _ 2 |2 MeSH
|a Diffusion Magnetic Resonance Imaging: instrumentation
650 _ 2 |2 MeSH
|a Diffusion Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Gases: chemistry
650 _ 2 |2 MeSH
|a Gases: diagnostic use
650 _ 2 |2 MeSH
|a Helium: chemistry
650 _ 2 |2 MeSH
|a Helium: diagnostic use
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Enhancement: methods
650 _ 2 |2 MeSH
|a Isotopes: chemistry
650 _ 2 |2 MeSH
|a Isotopes: diagnostic use
650 _ 2 |2 MeSH
|a Lung: anatomy & histology
650 _ 2 |2 MeSH
|a Lung: chemistry
650 _ 2 |2 MeSH
|a Phantoms, Imaging
650 _ 2 |2 MeSH
|a Reproducibility of Results
650 _ 2 |2 MeSH
|a Sensitivity and Specificity
650 _ 7 |0 0
|2 NLM Chemicals
|a Contrast Media
650 _ 7 |0 0
|2 NLM Chemicals
|a Gases
650 _ 7 |0 0
|2 NLM Chemicals
|a Isotopes
650 _ 7 |0 7440-59-7
|2 NLM Chemicals
|a Helium
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a gas MRI
653 2 0 |2 Author
|a restricted diffusion
653 2 0 |2 Author
|a lung
653 2 0 |2 Author
|a buffer gas
653 2 0 |2 Author
|a contrast
700 1 _ |a Blümler, P.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB49819
700 1 _ |a Agulles-Petrós, L.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Morbach, A. E.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Schmiedeskamp, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Herweling, A.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Wolf, U.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Scholz, A.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Schreiber, W. G.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Heil, W.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Thelen, M.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Spies, H.-W.
|b 11
|0 P:(DE-HGF)0
773 _ _ |a 10.1002/jmri.20777
|g Vol. 24, p. 1291 - 1297
|p 1291 - 1297
|q 24<1291 - 1297
|0 PERI:(DE-600)1497154-9
|t Journal of magnetic resonance imaging
|v 24
|y 2006
|x 1053-1807
856 7 _ |u http://dx.doi.org/10.1002/jmri.20777
909 C O |o oai:juser.fz-juelich.de:47111
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)74248
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21