000047188 001__ 47188
000047188 005__ 20200423204224.0
000047188 0247_ $$2pmid$$apmid:15746308
000047188 0247_ $$2pmc$$apmc:PMC1065174
000047188 0247_ $$2DOI$$a10.1128/AEM.71.3.1123-1129.2005
000047188 0247_ $$2WOS$$aWOS:000227702900001
000047188 0247_ $$2Handle$$a2128/790
000047188 037__ $$aPreJuSER-47188
000047188 041__ $$aeng
000047188 082__ $$a570
000047188 084__ $$2WoS$$aBiotechnology & Applied Microbiology
000047188 084__ $$2WoS$$aMicrobiology
000047188 1001_ $$0P:(DE-HGF)0$$aGabriel, F.$$b0
000047188 245__ $$aDifferential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram
000047188 260__ $$aWashington, DC [u.a.]$$bSoc.$$c2005
000047188 300__ $$a1123 - 1129
000047188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047188 3367_ $$2DataCite$$aOutput Types/Journal article
000047188 3367_ $$00$$2EndNote$$aJournal Article
000047188 3367_ $$2BibTeX$$aARTICLE
000047188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047188 3367_ $$2DRIVER$$aarticle
000047188 440_0 $$08561$$aApplied and Environmental Microbiology$$v71$$x0099-2240
000047188 500__ $$aRecord converted from VDB: 12.11.2012
000047188 520__ $$aSphingomonas xenophaga Bayram, isolated from the activated sludge of a municipal wastewater treatment plant, was able to utilize 4-(1-ethyl-1,4-dimethylpentyl)phenol, one of the main isomers of technical nonylphenol mixtures, as a sole carbon and energy source. The isolate degraded 1 mg of 4-(1-ethyl-1,4-dimethylpentyl)phenol/ml in minimal medium within 1 week. Growth experiments with five nonylphenol isomers showed that the three isomers with quaternary benzylic carbon atoms [(1,1,2,4-tetramethylpentyl)phenol, 4-(1-ethyl-1,4-dimethylpentyl)phenol, and 4-(1,1-dimethylheptyl)phenol] served as growth substrates, whereas the isomers containing one or two hydrogen atoms in the benzylic position [4-(1-methyloctyl)phenol and 4-n-nonylphenol] did not. However, when the isomers were incubated as a mixture, all were degraded to a certain degree. Differential degradation was clearly evident, as isomers with more highly branched alkyl side chains were degraded much faster than the others. Furthermore, the C9 alcohols 2,3,5-trimethylhexan-2-ol, 3,6-dimethylheptan-3-ol, and 2-methyloctan-2-ol, derived from the three nonylphenol isomers with quaternary benzylic carbon atoms, were detected in the culture fluid by gas chromatography-mass spectrometry, but no analogous metabolites could be found originating from 4-(1-methyloctyl)phenol and 4-n-nonylphenol. We propose that 4-(1-methyloctyl)phenol and 4-n-nonylphenol were cometabolically transformed in the growth experiments with the mixture but that, unlike the other isomers, they did not participate in the reactions leading to the detachment of the alkyl moiety. This hypothesis was corroborated by the observed accumulation in the culture fluid of an as yet unidentified metabolite derived from 4-(1-methyloctyl)phenol.
000047188 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000047188 588__ $$aDataset connected to Web of Science, Pubmed
000047188 650_2 $$2MeSH$$aAlcohols: chemistry
000047188 650_2 $$2MeSH$$aAlcohols: metabolism
000047188 650_2 $$2MeSH$$aBiodegradation, Environmental
000047188 650_2 $$2MeSH$$aGas Chromatography-Mass Spectrometry
000047188 650_2 $$2MeSH$$aIsomerism
000047188 650_2 $$2MeSH$$aMolecular Structure
000047188 650_2 $$2MeSH$$aPhenols: chemistry
000047188 650_2 $$2MeSH$$aPhenols: metabolism
000047188 650_2 $$2MeSH$$aSewage: microbiology
000047188 650_2 $$2MeSH$$aSphingomonas: isolation & purification
000047188 650_2 $$2MeSH$$aSphingomonas: metabolism
000047188 650_7 $$00$$2NLM Chemicals$$aAlcohols
000047188 650_7 $$00$$2NLM Chemicals$$aPhenols
000047188 650_7 $$00$$2NLM Chemicals$$aSewage
000047188 650_7 $$025154-52-3$$2NLM Chemicals$$anonylphenol
000047188 650_7 $$2WoSType$$aJ
000047188 7001_ $$0P:(DE-HGF)0$$aGiger, W.$$b1
000047188 7001_ $$0P:(DE-Juel1)129325$$aGünther, K.$$b2$$uFZJ
000047188 7001_ $$0P:(DE-HGF)0$$aKohler, H.-P.$$b3
000047188 773__ $$0PERI:(DE-600)1478346-0$$a10.1128/AEM.71.3.1123-1129.2005$$gVol. 71, p. 1123 - 1129$$p1123 - 1129$$q71<1123 - 1129$$tApplied and environmental microbiology$$v71$$x0099-2240$$y2005
000047188 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065174
000047188 8564_ $$uhttps://juser.fz-juelich.de/record/47188/files/74408.pdf$$yOpenAccess
000047188 8564_ $$uhttps://juser.fz-juelich.de/record/47188/files/74408.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000047188 8564_ $$uhttps://juser.fz-juelich.de/record/47188/files/74408.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000047188 8564_ $$uhttps://juser.fz-juelich.de/record/47188/files/74408.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000047188 909CO $$ooai:juser.fz-juelich.de:47188$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000047188 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000047188 9141_ $$y2005
000047188 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000047188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000047188 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000047188 970__ $$aVDB:(DE-Juel1)74408
000047188 980__ $$aVDB
000047188 980__ $$aJUWEL
000047188 980__ $$aConvertedRecord
000047188 980__ $$ajournal
000047188 980__ $$aI:(DE-Juel1)IBG-2-20101118
000047188 980__ $$aUNRESTRICTED
000047188 980__ $$aFullTexts
000047188 9801_ $$aFullTexts
000047188 981__ $$aI:(DE-Juel1)IBG-2-20101118
000047188 981__ $$aI:(DE-Juel1)ICG-3-20090406