000047200 001__ 47200
000047200 005__ 20240708132830.0
000047200 0247_ $$2DOI$$a10.1007/s10853-005-2819-5
000047200 0247_ $$2WOS$$aWOS:000231417300009
000047200 037__ $$aPreJuSER-47200
000047200 041__ $$aeng
000047200 082__ $$a670
000047200 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000047200 1001_ $$0P:(DE-Juel1)VDB14416$$aSchüller, E.$$b0$$uFZJ
000047200 245__ $$aMetal Injection Molding for Prealloyed NiTi Shape Memory Alloys
000047200 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2005
000047200 300__ $$a4231 - 4238
000047200 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047200 3367_ $$2DataCite$$aOutput Types/Journal article
000047200 3367_ $$00$$2EndNote$$aJournal Article
000047200 3367_ $$2BibTeX$$aARTICLE
000047200 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047200 3367_ $$2DRIVER$$aarticle
000047200 440_0 $$03507$$aJournal of Materials Science$$v40$$x0022-2461$$y16
000047200 500__ $$aRecord converted from VDB: 12.11.2012
000047200 520__ $$aMetal injection molding (MIM) was applied for the production of shape memory parts using prealloyed NiTi powders with different Ni contents as starting materials. The MIM process allows the production of near-net-shape components without the occurrence of-rapid tool wear as found in the case of conventional machining operations. With optimized manufacturing conditions, including feedstock preparation, injection parameters and sintering conditions, densities of more than 98% of the theoretical value could be achieved. Determination of the phase transformation behavior, as a basic requirement for the shape memory effect, was done by differential scanning calorimetry (DSC). In a first approach, tensile tests in the austenitic state showed pseudoelastic behavior. An elongation at failure of 3.8% was found. For martensite, up to 5% was obtained. Reasons for the lower strain compared to melted NiTi alloys are discussed. For martensitic samples the one-way shape memory effect (1WE) was demonstrated. (c) 2005 Springer Science + Business Media, Inc.
000047200 536__ $$0G:(DE-Juel1)FUEK246$$2G:(DE-HGF)$$aBrennstoffzelle$$cE01$$x0
000047200 588__ $$aDataset connected to Web of Science
000047200 650_7 $$2WoSType$$aJ
000047200 7001_ $$0P:(DE-Juel1)VDB37081$$aKrone, L.$$b1$$uFZJ
000047200 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b2$$uFZJ
000047200 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$uFZJ
000047200 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b4$$uFZJ
000047200 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-005-2819-5$$gVol. 40, p. 4231 - 4238$$p4231 - 4238$$q40<4231 - 4238$$tJournal of materials science$$v40$$x0022-2461$$y2005
000047200 8567_ $$uhttp://dx.doi.org/10.1007/s10853-005-2819-5
000047200 909CO $$ooai:juser.fz-juelich.de:47200$$pVDB
000047200 9131_ $$0G:(DE-Juel1)FUEK246$$bEnergie$$kE01$$lRationelle Energieumwandlung$$vBrennstoffzelle$$x0
000047200 9141_ $$y2005
000047200 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000047200 9201_ $$0I:(DE-Juel1)VDB5$$d31.12.2006$$gIWV$$kIWV-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000047200 970__ $$aVDB:(DE-Juel1)74419
000047200 980__ $$aVDB
000047200 980__ $$aConvertedRecord
000047200 980__ $$ajournal
000047200 980__ $$aI:(DE-Juel1)IEK-1-20101013
000047200 980__ $$aUNRESTRICTED
000047200 981__ $$aI:(DE-Juel1)IMD-2-20101013
000047200 981__ $$aI:(DE-Juel1)IEK-1-20101013