001     47200
005     20240708132830.0
024 7 _ |2 DOI
|a 10.1007/s10853-005-2819-5
024 7 _ |2 WOS
|a WOS:000231417300009
037 _ _ |a PreJuSER-47200
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Schüller, E.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB14416
245 _ _ |a Metal Injection Molding for Prealloyed NiTi Shape Memory Alloys
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2005
300 _ _ |a 4231 - 4238
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Materials Science
|x 0022-2461
|0 3507
|y 16
|v 40
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Metal injection molding (MIM) was applied for the production of shape memory parts using prealloyed NiTi powders with different Ni contents as starting materials. The MIM process allows the production of near-net-shape components without the occurrence of-rapid tool wear as found in the case of conventional machining operations. With optimized manufacturing conditions, including feedstock preparation, injection parameters and sintering conditions, densities of more than 98% of the theoretical value could be achieved. Determination of the phase transformation behavior, as a basic requirement for the shape memory effect, was done by differential scanning calorimetry (DSC). In a first approach, tensile tests in the austenitic state showed pseudoelastic behavior. An elongation at failure of 3.8% was found. For martensite, up to 5% was obtained. Reasons for the lower strain compared to melted NiTi alloys are discussed. For martensitic samples the one-way shape memory effect (1WE) was demonstrated. (c) 2005 Springer Science + Business Media, Inc.
536 _ _ |a Brennstoffzelle
|c E01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK246
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Krone, L.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB37081
700 1 _ |a Bram, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)129591
700 1 _ |a Buchkremer, H. P.
|b 3
|u FZJ
|0 P:(DE-Juel1)129594
700 1 _ |a Stöver, D.
|b 4
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1007/s10853-005-2819-5
|g Vol. 40, p. 4231 - 4238
|p 4231 - 4238
|q 40<4231 - 4238
|0 PERI:(DE-600)2015305-3
|t Journal of materials science
|v 40
|y 2005
|x 0022-2461
856 7 _ |u http://dx.doi.org/10.1007/s10853-005-2819-5
909 C O |o oai:juser.fz-juelich.de:47200
|p VDB
913 1 _ |k E01
|v Brennstoffzelle
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK246
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB5
|x 0
970 _ _ |a VDB:(DE-Juel1)74419
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21