000004731 001__ 4731
000004731 005__ 20180208214142.0
000004731 0247_ $$2DOI$$a10.1088/0741-3335/51/2/024001
000004731 0247_ $$2WOS$$aWOS:000262585400002
000004731 037__ $$aPreJuSER-4731
000004731 041__ $$aeng
000004731 082__ $$a530
000004731 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000004731 084__ $$2WoS$$aPhysics, Nuclear
000004731 1001_ $$0P:(DE-HGF)0$$aRobinson, A.P.L.$$b0
000004731 245__ $$aScaling of the proton density reduction scheme for the laser acceleration of proton beams with a narrow energy spread
000004731 260__ $$aBristol$$bIOP Publ.$$c2009
000004731 300__ $$a024001
000004731 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004731 3367_ $$2DataCite$$aOutput Types/Journal article
000004731 3367_ $$00$$2EndNote$$aJournal Article
000004731 3367_ $$2BibTeX$$aARTICLE
000004731 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004731 3367_ $$2DRIVER$$aarticle
000004731 440_0 $$04996$$aPlasma Physics and Controlled Fusion$$v51$$x0741-3335
000004731 500__ $$aRecord converted from VDB: 12.11.2012
000004731 520__ $$aThe laser acceleration of proton beams with quasi-monoenergetic features in the energy spectra from microdot targets is investigated by numerical simulation. The formation of these spectral peaks is strongly dependent on the interplay between different ion species in the target. The scaling of the spectral peak's energy, and number of protons in the spectral peak, with both microdot composition and laser intensity is considered. Particular attention is given to determining the proton concentration below which the number of protons in the spectral peak rapidly diminishes. It is shown that at proton concentrations of 1-5n(crit) a spectral peak is produced that reaches an energy up to 70% of the maximum proton energy, whilst still containing more protons than would be produced by a conventional target in this energy range.
000004731 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000004731 588__ $$aDataset connected to Web of Science
000004731 650_7 $$2WoSType$$aJ
000004731 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b1$$uFZJ
000004731 7001_ $$0P:(DE-HGF)0$$aPfotenhauer, S.M.$$b2
000004731 7001_ $$0P:(DE-HGF)0$$aJäckel, O.$$b3
000004731 7001_ $$0P:(DE-HGF)0$$aPolz, J.$$b4
000004731 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/0741-3335/51/2/024001$$gVol. 51, p. 024001$$p024001$$q51<024001$$tPlasma physics and controlled fusion$$v51$$x0741-3335$$y2009
000004731 8567_ $$uhttp://dx.doi.org/10.1088/0741-3335/51/2/024001
000004731 909CO $$ooai:juser.fz-juelich.de:4731$$pVDB
000004731 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000004731 9141_ $$y2009
000004731 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000004731 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000004731 970__ $$aVDB:(DE-Juel1)111932
000004731 980__ $$aVDB
000004731 980__ $$aConvertedRecord
000004731 980__ $$ajournal
000004731 980__ $$aI:(DE-Juel1)JSC-20090406
000004731 980__ $$aUNRESTRICTED