000047321 001__ 47321
000047321 005__ 20180210140916.0
000047321 0247_ $$2DOI$$a10.1007/s00214-003-0530-7
000047321 0247_ $$2WOS$$aWOS:000220424700005
000047321 037__ $$aPreJuSER-47321
000047321 041__ $$aeng
000047321 082__ $$a540
000047321 084__ $$2WoS$$aChemistry, Physical
000047321 1001_ $$0P:(DE-HGF)0$$ado Monte, S. A.$$b0
000047321 245__ $$aSolvent effects in electronically excited states using the continuum solvation model COSMO in combination with multireference configuration interaction with single and doubles (MR-CISD)
000047321 260__ $$aBerlin$$bSpringer$$c2004
000047321 300__ $$a
000047321 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047321 3367_ $$2DataCite$$aOutput Types/Journal article
000047321 3367_ $$00$$2EndNote$$aJournal Article
000047321 3367_ $$2BibTeX$$aARTICLE
000047321 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047321 3367_ $$2DRIVER$$aarticle
000047321 440_0 $$09915$$aTheoretical Chemistry Accounts$$v111$$x1432-881X$$y2
000047321 500__ $$aRecord converted from VDB: 12.11.2012
000047321 520__ $$aAn implementation of the COSMO continuum solvation model into the MCSCF and MR-CISD programs of the COLUMBUS program system is reported. Equilibrium solvation and non-equilibrium solvation models for the treatment of electronic excitations have been used. Solvatochromic effects have been computed for a representative set of n-pi* and pi-pi* states of formaldehyde, acrolein and pyrazine using several solvents ranging from some with apolar character to water. Agreement with experimental shifts is good within the limits of a continuum model.
000047321 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0
000047321 588__ $$aDataset connected to Web of Science
000047321 650_7 $$2WoSType$$aJ
000047321 65320 $$2Author$$asolvatochromic effects
000047321 65320 $$2Author$$amultireference CI
000047321 65320 $$2Author$$an-pi* and pi-pi* states
000047321 65320 $$2Author$$apolar and apolar solvents
000047321 7001_ $$0P:(DE-Juel1)132204$$aMüller, T.$$b1$$uFZJ
000047321 7001_ $$0P:(DE-HGF)0$$aDallos, M.$$b2
000047321 7001_ $$0P:(DE-HGF)0$$aLischka, H.$$b3
000047321 7001_ $$0P:(DE-HGF)0$$aDiedenhofen, M.$$b4
000047321 7001_ $$0P:(DE-HGF)0$$aKlamt, A.$$b5
000047321 773__ $$0PERI:(DE-600)1463180-5$$a10.1007/s00214-003-0530-7$$gVol. 111$$q111$$tTheoretical chemistry accounts$$v111$$x1432-881X$$y2004
000047321 8567_ $$uhttp://dx.doi.org/10.1007/s00214-003-0530-7
000047321 909CO $$ooai:juser.fz-juelich.de:47321$$pVDB
000047321 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0
000047321 9141_ $$aNachtrag$$y2004
000047321 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000047321 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000047321 970__ $$aVDB:(DE-Juel1)74647
000047321 980__ $$aVDB
000047321 980__ $$aConvertedRecord
000047321 980__ $$ajournal
000047321 980__ $$aI:(DE-Juel1)JSC-20090406
000047321 980__ $$aUNRESTRICTED
000047321 981__ $$aI:(DE-Juel1)JSC-20090406