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Using a nonlinear thermodynamic theory, we describe equilibrium polarization states and the
macroscopic dielectric response of nanocrystalline ferroelectric ceramics with single-domain grains.
The elastic clamping of individual crystallites by the surrounding material is explicitly taken into
account via the introduction of a specific thermodynamic potential. Aggregate material properties
are calculated with the aid of an iterative procedure based on the method of effective medium. The
numerical calculations, performed for unpolarized BaTiO3 and PbsZr1−xTixdO3 ceramics,
demonstrate that the equilibrium phase states of nanocrystalline ceramics may differ drastically from
those of single crystals and coarse-grained materials. Remarkably, the theory predicts the
coexistence of rhombohedral and tetragonal crystallites in nanocrystalline PbsZr1−xTixdO3 ceramics
in a wide range of compositions and temperatures. For BaTiO3 ceramics, a mixture of rhombohedral
and orthorhombic crystallites is found to be the energetically most favorable state at room
temperature. The calculations also show that the dielectric properties of nanocrystalline ferroelectric
ceramics may be very different from those of conventional materials due to the elastic clamping of
single-domain crystallites. ©2005 American Institute of Physics. fDOI: 10.1063/1.1924875g

I. INTRODUCTION

Polycrystalline ferroelectric materials are widely em-
ployed in modern microelectronics.1 Former experimental in-
vestigations of these materials demonstrated that the dielec-
tric response and domain structure of ferroelectric ceramics
depend on the grain size.2–6 A further reduction of crystallite
dimensions down to the nanoscale may lead to the appear-
ance of unusual physical properties as compared to those of
conventional polycrystals. Some data on the microstructure
and behavior of nanocrystalline powders, ceramics, and thin
films of BaTiO3, PbTiO3, and PbsZr1−xTixdO3 have been al-
ready obtained,7–13 and the experimental results indicate
even the disappearance of ferroelectricity below a critical
crystal size.

Specific physical properties of nanocrystalline ferroelec-
trics may arise from several different reasons. These include
the intrinsic size effect on ferroelectricity,14–16 the influence
of depolarizing field,17,18 the surface tension effect,8 and the
surface bond contraction.19 In ceramic materials, where indi-
vidual crystallites are surrounded by a ferroelectric medium,
the mechanical effect caused by the elastic three-dimensional
s3Dd clamping of crystallites may play an important role.
Indeed, below some critical grain size, the twinning of crys-
tallites, which strongly reduces internal stresses in coarse-
grained ceramics, becomes energetically unfavorable.5 Ow-
ing to the mechanical grain/grain interactions, high

mechanical stresses appear in single-domain crystallites be-
low the ferroelectric phase transition, which alter their physi-
cal properties. As shown by Buessemet al.,20 the presence of
such stresses may explain the observed strong increase of
permittivity in fine-grained BaTiO3 ceramics. In their classi-
cal paper, a simplified model of a tetragonal crystallite under
a given constant stress was used to calculate the dielectric
response.20

For the correct theoretical description of ferroelectricity
in elastically clamped crystallites, the mechanical boundary
conditions existing on the grain boundaries must be properly
taken into account. Since clamped crystallites in dense ce-
ramics are neither under a constant stress nor under a con-
stant strain, a specific thermodynamic potential must be in-
troduced to describe the effect of the elastic 3D clamping on
homogeneously polarized ferroelectric crystallites.21,22 The

minimization of this potentialG̃ makes it possible to deter-
mine the equilibrium thermodynamic state of a crystallite
embedded in a homogeneous linear medium with given elas-
tic stiffnesses. In the case of ceramics, however, these stiff-
nesses must be regarded as unknown quantities because they
represent the aggregate material properties on the macro-
scopic level. Therefore, the determination of the phase states
and physical properties of ferroelectric ceramics calls for the
use of a self-consistent scheme.

Up to now, this scheme, also called the effective medium
approach, has been applied only to the calculations of aggre-
gate material constants, which were performed in the linear
approximation.23–30 In the present paper, we combine the
method of effective medium with the nonlinear thermody-
namic theory of ferroelectrics31–33 to calculate the actual po-
larization states and material constants of BaTiO3 and
PbsZr1−xTixdO3 ceramics with single-domain grains. Since
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this nonlinear approach takes into account the polarization
changes caused by the elastic 3D clamping of crystallites, it
enables the correct determination of the physical properties
of ferroelectric ceramics.

In Sec. II, a general expression is derived for the ther-

modynamic potentialG̃ of a spherical ferroelectric crystallite
sinclusiond clamped by a linear elastic mediumsmatrixd. In
contrast to the previous treatment of the problem,22 we allow
for the presence of inelasticsspontaneousd strains in the ma-
trix. The influence of external mechanical and electric fields
on the thermodynamic state of a ferroelectric inclusion is
considered in Sec. III. An iterative procedure is also de-
scribed here, which makes it possible to calculate the aggre-
gate material constants of nanocrystalline ferroelectric ce-
ramics. The results of our numerical calculations performed
for unpolarized BaTiO3 and PbsZr1−xTixdO3 ceramics are re-
ported in Sec. IV. We describe the stability ranges of various
phase states in these ceramics and their dielectric properties
and compare our theoretical predictions with available ex-
perimental data. Finally, main conclusions of this study are
formulated in Sec. V.

II. DETERMINATION OF EQUILIBRIUM POLARIZATION
STATE OF A FERROELECTRIC INCLUSION

We start with the development of a thermodynamic for-
malism that enables us to determine the equilibrium phase
state of a single-domain ferroelectric crystallitesinclusiond
embedded into a linear elastic mediumsmatrixd. Owing to
the finite conductivity of perovskite ferroelectrics, in this
section we neglect the influence of internal electric fields
caused by the presence of electric polarizationP inside the
inclusion. For simplicity, we shall assume the inclusion to
have a spherical shape and the matrix to be homogeneous,
nonpiezoelectric, and isotropicsthis approximation is suffi-
cient for the modeling of unpolarized bulk ceramicsd. In con-
trast to the previous treatment of the problem,22 the matrix is
allowed to possess uniform inelastic strainsSij

0msi , j =1,2,3d.
WhenSij

0m=0 and the crystallite is in a paraelectric phase, the
inclusion/matrix system is taken to be free of internal me-
chanical stressessi j .

The stable thermodynamic states of an elastically
clamped ferroelectric crystallite correspond to the minima of

the modified thermodynamic potentialG̃ introduced in Ref.

22. Generalizing the basic relation forG̃ derived in Ref. 22,
we obtain the following formula:

G̃ = F − 1
2sSij − Sij

0mdsi j , s1d

whereF, Sij , andsi j are theshomogeneousd Helmholtz free-
energy density, total strain, and stress inside the ferroelectric
inclusion, respectively. For our purposes, it is convenient to
replaceF in Eq. s1d by the Gibbs free-energy densityG via
the inverse Legendre transformationF=G+Sijsi j . Therefore,
the modified thermodynamic potential may be written as

G̃ = G + 1
2Sijsi j + 1

2Sij
0msi j . s2d

Using an explicit expression for the Gibbs energyG of a
ferroelectric given in Ref. 34, we derive

G̃ = G0sPid − 1
2sijkl

P si jskl − Qijklsi j PkPl + 1
2Sijsi j + 1

2Sij
0msi j ,

s3d

wheresijkl
P are the elastic compliances at constant polariza-

tion, Qijkl are the electrostrictive constants in full polarization
notation, andG0sPid is the polynomial in terms of polariza-
tion componentsPi inside the inclusion. In theP6 approxi-
mation, which is necessary to describe ferroelectrics with the
first-order phase transition,G0sPid has the form34

G0sPid = a1sP1
2 + P2

2 + P3
2d + a11sP1

4 + P2
4 + P3

4d

+ a12sP1
2P2

2 + P2
2P3

2 + P1
2P3

2d

+ a111sP1
6 + P2

6 + P3
6d + a112fP1

4sP2
2 + P3

2d

+ P2
4sP1

2 + P3
2d + P3

4sP1
2 + P2

2dg + a123P1
2P2

2P3
2, s4d

wherea1, ai j , andai jk are the dielectric stiffness and higher-
order stiffness coefficients at constant stress.

To find the equilibrium thermodynamic state of a ferro-

electric inclusion, we should express the potentialG̃ solely in
terms of the polarization componentsPi. Mechanical stresses
si j can be excluded from Eq.s3d using the nonlinear equa-
tion of state of a ferroelectric crystal

si j =
]F

]Sij
= cijkl

P Skl − cijmn
P QmnklPkPl , s5d

which may be obtained by differentiating the Helmholtz free
energyscijkl

P are the elastic stiffnesses of the ferroelectric in-
clusion at constant polarizationd. In turn, relationships be-
tween strainsSkl and polarization componentsPi should be
found from the condition of mechanical equilibrium of the
inclusion/matrix system. This problem can be solved by the
generalization of Eshelby’s equivalent inclusion
technique.30,35 Using this formalism and performing the al-
gebraic manipulations similar to those described in Ref. 22,
one can obtain the relationship

Skl = Bskldmncmnpq
* s̃pqrscrsij

P QijtuPtPu

− Bskldmncmnpq
* s̃pqrscrsuv

P Suv
0m + Skl

0m. s6d

Here cmnpq
* are the elastic stiffnesses of the matrix,Bskldmn

=s1/2dsBklmn+Blkmnd, andBklmn is the basic matrix of a ho-
mogeneous inclusion/matrix system given by

Bklmn=
1

4p
E

V

zkszzdlm
−1zn

sz1
2 + z2

2 + z3
2d3/2dV, s7d

where the integration is carried out over the surfaceV of the
unit sphere,zi are the components of the unit vectorz, and
szzdlm

−1 is the inverse of the real symmetrics333d matrix
szzdkl=zicilkj

* zj. The tensors̃uvi j depends only on the elastic
constantscijkl

* andcijkl
P , being defined by the system of equa-

tions sdkl is the Kronecker deltad

s̃uvi jfscijkl
* − cijkl

P dBskldmncmnpq
* − cijpq

* g = − dupdvq. s8d

It should be noted that Eq.s6d for the inclusion strainsSkl

differs from the corresponding formula derived in Ref. 22 by
the presence of two additional terms depending on the matrix
inelastic strainsSkl

0m.
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Substituting Eqs.s5d and s6d into Eq. s3d, after some
algebraic manipulation, we find the thermodynamic potential

G̃ as a function of the polarization componentsPi only. The
result may be written as

G̃ = G0sPid − 1
2Bsmndi j cijkl

* s̃klrslrspqlmntuPtPuPpPq

+ 1
2cijkl

P QklpqQijtuPtPuPpPq − cklmn
P QmnpqSkl

MePpPq

+ 1
2Suv

0mcuvmn
P Smn

Me, s9d

whereli jkl =−cijmn
P Qmnkl and

Skl
Me = Skl

0m − Bskldmncmnpq
* s̃pqrscrsuv

P Suv
0m. s10d

Expressionss9d and s10d enable us to find the stable polar-
ization state of a ferroelectric inclusion via the minimization

of the potentialG̃ with respect to three variables,P1, P2, and
P3. If several local minima exist, the equilibrium state of
inclusion/matrix system corresponds to the deepest minimum

of G̃.

III. SELF-CONSISTENT CALCULATION OF EFFECTIVE
MATERIAL CONSTANTS

To calculate material constants of a ferroelectric ce-
ramic, we employ the method of effective medium23–30 to-
gether with an iterative procedure. This approach deals with
the model material system, which involves a single represen-
tative ferroelectric crystallitesinclusiond surrounded by a ho-
mogeneous elastic mediumsmatrixd. On each iteration, cer-
tain elastic stiffnessescijkl

* , dielectric constants«i j
* , and

inelasticsspontaneousd strainsSij
0m are assigned to the matrix.

In the absence of applied electric and mechanical fields, the
polarization state of a spherical single-domain inclusion, de-
fined by the equilibrium polarization componentsPi

g, can be
found as described in Sec. II. The substitution ofPi

g into Eq.
s6d enables us to calculate the total strainsSkl

g inside the
inclusion. Mechanical stressesskl

g existing in the inclusion
can be computed then by substitutingPi

g andSkl
g into Eq.s5d.

It should be recalled that we assumed the internal electric
field to be zero in equilibriumsEg=0d because the polariza-
tion charges are expected to be largely compensated by free
charges due to the finite conductivity of ferroelectric ceram-
ics. In what follows, however, the material system is treated
as a perfect insulator since the charge carriers remain practi-
cally immobile during the dielectric measurements.

Suppose now that the inhomogeneous inclusion/matrix
system under consideration is subjected to a uniform strain
field Smn

a and electric fieldEn
a at large distances from the

ferroelectric inclusionV. These external fields alter the po-
larization components, total strain, and stress inside the in-
clusion, which may be written asPi =Pi

g+DPi, Smn=Smn
g

+DSmn, and si j =si j
g +Dsi j . An electric field En=En

g+DEn

=DEn also appears in the inclusion, being different fromEn
a.

SincePi, Smn, andsi j remain uniform insideV,36,37 we can
use Eshelby’s equivalent inclusion technique30,35 to calculate
the perturbationsDPi, DSmn, Dsi j and the fieldDEn.

To solve the problem, we introduce another material sys-
tem, where the ferroelectric inclusion is replaced by a sphere
V* having linear elastic and dielectric properties and exactly

the same material constantscijkl
* and «i j

* as the surrounding
matrix. This “homogeneous” inclusionV* is assumed to un-
dergo a uniform transformationsinelasticd strainSkl

0x and ac-
quire a uniform permanent polarizationPi

0x in the absence of
mechanical stresses and depolarization fields. Since the me-
dium is linear everywhere, the total strainDSmn

* and electric
field DEn

* inside the transformed sphereV* are given by the
relations30

DSmn
* = Smn

a + Bsnmd jicijkl
* Skl

0x, s11d

DEn
* = En

a + Bn44iPi
0x, s12d

where Bn44i is the matrix defined by an expression, which
differs from Eq.s7d by the replacement ofszzdlm

−1 by szzd44
−1

with szzd44=−zi«ik
* zk.

For the stressDsi j
* and polarizationDPn

* existing in the
inclusionV* , we haves«0 is the permittivity of the vacuumd

Dsi j
* = cijkl

* sDSkl
* − Skl

0xd, s13d

DPn
* = Pn

0x + «ni
* DEi

* − «0DEn
* . s14d

To ensure the equivalence of the introduced inclusion to the
perturbation of the actual one, the following relationships
must hold:

Dsi j
* = Dsi j , s15d

DPn
* = DPn, s16d

DSmn
* = DSmn, s17d

DEn
* = DEn. s18d

At the same time, the strain perturbationDSmn and the elec-
tric field DEn in the ferroelectric inclusion may be expressed
in terms of the derivatives of the Gibbs energyG as

DSmn= − gmn
S sPi

g + DPi,skl
g + Dskld − Smn

g , s19d

DEn = gn
EsPi

g + DPi,skl
g + Dskld, s20d

where

gmn
S sPi,skld =

]GsPi,skld
]smn

, s21d

gn
EsPi,skld =

]GsPi,skld
]Pn

. s22d

Using the equivalence conditionss15d ands16d, we can sub-
stituteDsi j

* for Dsi j andDPn
* for DPn in the right-hand sides

of Eqs.s19d and s20d. Then, in accordance with the equiva-
lence relationss17d and s18d, the right-hand sides of Eqs.
s11d and s12d may be equated with the right-hand sides of
Eqs.s19d and s20d, respectively. This procedure yields

Smn
a + Bsnmd jicijkl

* Skl
0x = − gmn

S sPi
g + DPi

* ,skl
g + Dskl

* d − Smn
g , s23d
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En
a + Bn44iPi

0x = gn
EsPi

g + DPi
* ,skl

g + Dskl
* d. s24d

Excluding the stressDskl
* and polarizationDPi

* from Eqs.
s23d and s24d with the aid of Eqs.s13d and s14d, we finally
obtain

Smn
a + Bsnmd jicijkl

* Skl
0x = − gmn

S fPi
g + Pi

0x + «ir
* DEr

* − «0DEi
* ,skl

g

+ ckluv
* sDSuv

* − Suv
0xdg − Smn

g , s25d

En
a + Bn44iPi

0x = gn
EbPi

g + Pi
0x + «ir

* DEr
* − «0DEi

* ,skl
g

+ ckluv
* sDSuv

* − Suv
0xdc. s26d

Since the derivatives of the Gibbs free energyG can be
found in an explicit form by differentiating the well-known
expression forG,34 the relationss25d ands26d at given values
of Smn

a , En
a, Smn

g , andPi
g constitute a system of nine simulta-

neous equations in nine unknowns,Suv
0x andPi

0x. This system
can be solved numerically, thus enabling us to calculateSuv

0x,
Pi

0x and thenDSmn
* , DEn

* , Dsi j
* , andDPn

* from Eqs.s11d–s14d.
Accordingly, the sought perturbationsDPi, DSmn, Dsi j , and
DEn of the inclusion state, which are induced by the applied
strainSmn

a and electric fieldEn
a, can be determined by means

of numerical calculations.
This result enables us to proceed to the calculation of the

effective elastic and dielectric constants of a ferroelectric ce-
ramic. To that end, we introduce two Cartesian coordinate
systems: the samplesceramicd system sx,y,zd associated
with the matrix and the crystallographic coordinate system
sx8 ,y8 ,z8d of the crystallite sinclusiond in the paraelectric
state. Orientation of the crystallographic systemsx8 ,y8 ,z8d
relative to the ceramic reference framesx,y,zd may be de-
fined by the Euler anglesw, c, and u. While the effective
medium is isotropic and nonpiezoelectric in our case, each
individual ferroelectric crystallite is anisotropic. Therefore,
the stress perturbationDsi j and electric inductionDDn

=DPn+«0DEn, which are induced in a representative crystal-
lite by the external strainSmn

a and electric fieldEn
a set in the

sample framesx,y,zd, depend on the spatial orientation
sw ,c ,ud of its crystal lattice. In an untextured ceramic, all
lattice orientations of crystallites in the paraelectric state are
equally probable. For the normalized distribution function
fsw ,c ,ud of the Euler angles, in this situation we have
fsw ,c ,ud=1/s8p2d. Hence the average valueskSmn

g l, kDsi jl,
and kDDnl of the total strains Smn

g sw ,c ,ud, stresses
Dsi jsw ,c ,ud, and electric inductionDDnsw ,c ,ud in an en-
semble of crystallites can be found in the ceramic reference
frame as

kSmn
g l =

1

8p2E
0

2p

dwE
0

2p

dcE
0

p

Smn
g sw,c,udsinudu, s27d

kDsi jl =
1

8p2E
0

2p

dwE
0

2p

dcE
0

p

Dsi jsw,c,udsinudu, s28d

kDDnl =
1

8p2E
0

2p

dwE
0

2p

dcE
0

p

DDnsw,c,udsinudu. s29d

Calculating numerically the dependences ofkDsi jl and
kDDnl on the applied fieldsSmn

a andEn
a, we can evaluate the

macroscopic material constants of the aggregate of crystal-
lites as

kcijmnl =
]kDsi jl
]Smn

a , s30d

k«inl =
]kDDil

]En
a . s31d

To make the solution of the problem self-consistent, these
constants must coincide with the matrix constantscijkl

* and
«i j

* , and the average spontaneous strainkSmn
g l must be equal

to the matrix spontaneous strainSmn
0m. From the mathematical

point of view, the introduction of these conditions is equiva-
lent to the addition of several new equations to the system
s25d ands26d, with the corresponding increase of the number
of variables.

Since the resulting system of nonlinear equations is tran-
scendental and so cannot be solved analytically, we propose
the following iterative procedure to obtain the solution nu-
merically:

sid Consider first a mechanically free ferroelectric crys-
tallite in a single-domain state. Using the Gibbs free-
energy functionG of a ferroelectric, calculate the
equilibrium polarization componentsPi8, spontaneous
strainsSi8 j8

0 =Qi8 j8k8l8Pk8Pl8, and the small-signal elas-
tic and dielectric constantsci8 j8k8l8

P and «i8 j8
s in the

crystallographic reference framesx8 ,y8 ,z8d. Then
transform these tensors to the ceramic coordinate sys-
tem sx,y,zd, using the Euler anglessw ,c ,ud which
define the relative orientation of these reference
frames. Averaging over all possible lattice orientations
sw ,c ,ud with the aid of integral relations similar to
Eq. s27d, compute mean values of the spontaneous
strainsSij

0 and material constantscijkl
P and «i j

s for the
considered ensemble of crystallites. Employ these val-
ues as a first approximation for the matrix parameters
Sij

0m, cijkl
* , and«i j

* .
sii d Calculate numerically the basic matricesBklmn and

Bn44i by substituting the above approximate values of
the material constantscijkl

* and«i j
* into Eq. s7d.

siii d Determine the equilibrium polarization components
Pi

g and total strainsSmn
g in a representative ferroelec-

tric inclusion via the minimization of the modified

thermodynamic potentialG̃ given by Eq.s9d.
sivd Solve the system of nine simultaneous Eqs.s25d and

s26d with the matrix parametersSij
0m, cijkl

* , and«i j
* set

equal to the above approximate values, basic matrices
Bklmn determined as described insii d, and some rea-
sonable values chosen for the measuring external
fields En

a andSmn
a . A set of solutionsSuv

0x andPi
0x must
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be obtained, corresponding to various possible lattice
orientations in a representative crystallite relative to
the fixed reference framesx,y,zd.

svd Calculate auxiliary quantitiesDsi j
* , DPn

* , and DEn
*

from Eqs.s11d–s14d using the values ofSuv
0x and Pi

0x

obtained insivd. Then determine via Eqs.s15d, s16d,
and s18d the stressesDsi jsw ,c ,ud and electric induc-
tion DDnsw ,c ,ud inside a ferroelectric crystallite as a
function of the lattice orientation for given applied
fields En

a andSmn
a . Using Eqs.s27d–s29d, calculate the

mean valueskSmn
g l, kDsi jl, kDDnl of the total strain

Smn
g and the stress and induction changessDsi j and

DDnd in an ensemble of crystallites. Then determine
the dependences ofkDsi jl andkDDnl on applied fields
and evaluate the small-signal aggregate material con-
stantskcijmnl andk«inl from the slopes of these depen-
dences atSmn

a →0 andEn
a→0 in accordance with Eqs.

s30d and s31d.
svid Repeat the sequence of operationssii d–svd with the

matrix characteristicsSij
0m, cijkl

* , and«i j
* set equal to the

above values ofkSij
gl, kcijkll, and k«i jl instead of the

quantities calculated insid. Use the obtained new set
of parameterskSij

gl, kcijkll, k«i jl as the next approxima-
tion for the matrix characteristics. Continue the calcu-
lations until the difference between two successive
estimates of the aggregate material constants becomes
negligible. This self-consistent result describes the
sought elastic and dielectric constants of a ferroelec-
tric ceramic.

IV. NUMERICAL RESULTS FOR NANOCRYSTALLINE
Pb„Zr1−XTiX…O3 AND BaTiO 3 CERAMICS

We performed numerical calculations necessary to deter-
mine the actual phase states and dielectric properties of two
ferroelectric ceramics—lead zirconate titanate
PbsZr1−xTixdO3 sPZTd and barium titanate BaTiO3 sBTd. The
grains of these ceramics were assumed to be in a single-
domain state, which is typical of small-size crystallites. The
critical grain sizeg* in a ferroelectric polycrystal, below
which the single-domain state is energetically favored over
polydomain ones, can be evaluated from the comparison of
the elastic energy reduction due to the formation of non-180°
domain walls and the self-energy of these walls. In Ref. 22,
it was shown thatg* <4p2s1−ndg /mS0

2, wherem andn are
the effective shear modulus and Poisson’s ratio of a poly-
crystalline material,S0 is the characteristic spontaneous
strain of a ferroelectric, andg is the self-energy per unit area
of a domain wall. For PbTiO3 ceramics, the critical grain size
g* was estimated to be about 50 nm.22 In the case of PZT, the
critical sizeg* is expected to be of the same order of mag-
nitude. A larger value ofg* <300 nm has been obtained for
BT, using the numerical values ofm, n, and S0 given in
literature38,39 and analyzing the experimental data.40 The
above results show that grains in nanocrystalline PZT and
BT ceramics must be mostly free of non-180° domain walls.

For PZT solid solutions, the calculations were carried
out using the dielectric stiffnessesa1, ai j , andai jk at constant

stress and the electrostrictive constantsQijkl taken from Ref.
33 and the elastic compliancessijkl

P at constant polarization
given in Ref. 41.sAll these parameters were assumed to be
independent of temperature,33,41 except for the dielectric
stiffness a1 which was given a linear temperature depen-
dence based on the Curie–Weiss law.d To describe the effect
of composition on the properties of PZT ceramics, these ma-
terial constants were calculated as continuous functions of
the Ti contentx from the available discrete sets33,41by means
of spline interpolation. The theoretical analysis was restricted
by compositionsxù0.4 and temperatures aboveT=0 °C to
ensure good accuracy of the approximations4d used for the
Gibbs functionG0sPid.

41

Figure 1 shows the phase diagram of nanocrystalline
PZT ceramics that results from our numerical calculations.
Depending on the Ti content and temperature, the crystallites
in these ceramics were found to stabilize either in a tetrago-
nal or in a rhombohedral phase, which corresponds to the
crystal structures of conventional PZT ceramics.42 However,
there is a drastic difference from the behavior of polycrystals
with twinned grains. Indeed, in a wide range of compositions
and temperatures, tetragonal crystallites coexist with the
rhombohedral ones in a nanocrystalline ceramic with the
given Zr/Ti ratio. This remarkable theoretical result was ob-
tained somewhat unexpectedly during the numerical calcula-
tions. It was initially found that the procedure described in
Sec. III does not give any self-consistent solution of the
problem in some region of thesx,Td plane. In order to over-
come this difficulty, we supposed that a mixture of tetragonal
and rhombohedral crystallites may represent the energeti-
cally most favorable phase state of a nanocrystalline ceramic
in this region.

To check this supposition, we modified the aforemen-
tioned procedure by introducing two inclusion/matrix sys-
tems, which differ by the phase state of a ferroelectric inclu-
sion sphase I and phase IId embedded into the same matrix.

FIG. 1. Theoretical phase diagram of nanocrystalline PbsZr1−xTixdO3 ceram-
ics. Stability ranges of tetragonal and rhombohedral phases are denoted by
the letters T and RH, respectively. The region of the coexistence of tetrag-
onal and rhombohedral crystallites is labeled as RH+T. Dashed lines show
the morphotropic phase boundary and the line of ferroelectric phase transi-
tion calculated for coarse-grained PbsZr1−xTixdO3 ceramics, where internal
stresses are negligible due to the twinning of crystallites. This calculation
was performed using Eq.s4d for the Gibbs free energyG with the involved
thermodynamic parameters taken from Ref. 33.
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The polarization componentsPi
gI and Pi

gII and total strains
Smn

gI andSmn
gII in these inclusions can be evaluated by finding

the minimaG̃I andG̃II sabsolute and relatived of the modified

thermodynamic potentialG̃ given by Eq.s9d. On each itera-
tion, the energetically most favorable aggregate state is de-
termined via the minimization of the mean thermodynamic
potential

kG̃l = qG̃I + s1 − qdG̃II , s32d

with respect to the volume fractionq of phase I in a poly-
crystal. The mean valueskSmn

g l, kDsi jl, andkDDnl of the total
strain and the field-induced stress and induction changes in a
mixture of crystallites are calculated as

kSmn
g l = q*kSmn

gI l + s1 − q*dkSmn
gII l, s33d

kDsi jl = q*kDsi j
I l + s1 − q*dkDsi j

IIl, s34d

kDDnl = q*kDDn
I l + s1 − q*dkDDn

IIl, s35d

where q* is the optimum volume fraction of phase I, and
kSmn

gI l, kDsi j
I l, and kDDn

I l and kSmn
gII l, kDsi j

IIl, and kDDn
IIl are

computed via Eqs.s27d–s29d for the inclusions with the
phase states I and II, respectively. The small-signal aggregate
material constantskcijmnl and k«inl can be evaluated as ex-
plained in proceduresvd above and then used to find the
ceramic elastic and dielectric constants with the aid of an
iterative procedure described in proceduresvid.

Our numerical calculations confirmed that the mixture of
tetragonal and rhombohedral crystallites represents the most
favorable state of nanocrystalline PZT ceramics in a large
section of the phase diagramsFig. 1d. This region of phase
coexistence,Rr+t, may be regarded as a substitute for the
morphotropic phase boundarysMPBd existing in conven-
tional PZT.42 However, the left boundary ofRr+t is signifi-
cantly shifted from the MPB to larger Ti contentsx sby Dx
=10% –15%; see Fig. 1d. The right boundary is situated at
temperatures larger than 200 °C so that even atx=100% the
rhombohedral phase should exist at room temperature in
some grains of a nanocrystalline ceramic. We recall that, in
conventional form, PbTiO3 remains tetragonal at any tem-
perature below the ferroelectric transition.34

Strong enlargement of the rhombohedral field in the
phase diagram of nanocrystalline PZT ceramics is evidently
caused by the lack of stress relaxation via the twinning. The
mechanical stresses, arising in crystallites due to elastic
clamping by the surrounding material, favor the formation of
rhombohedral phase. In addition, when the twinning is not
allowed, the mixing of tetragonal and rhombohedral crystal-
lites represents an effective channel for the stress relaxation.
It should be noted that the coexistence of tetragonal and
rhombohedral phases was experimentally observed in epitax-
ial PZT thin films.43

The calculations also demonstrated that the paraelectric-
to-ferroelectric phase transition in nanocrystalline PZT ce-
ramics is always of the second order, irrespective of the
Zr/Ti ratio. This is different from the behavior of conven-
tional PZT, where the first-order phase transition takes place
at xù80%.33 The order of ferroelectric phase transition

changes due to the three-dimensional elastic clamping of
single-domain crystallites in a nanocrystalline ceramic. The
analysis shows that this clamping renormalizes the fourth-
order polarization term in the thermodynamic potential.22 At
xù80%, the renormalization changes the sign of the fourth-
order coefficienta11 from negative33 to positive.

In addition to the phase diagram, we calculated numeri-
cally the macroscopic dielectric response«nc of an unpolar-
ized nanocrystalline PZT ceramic as a function of composi-
tion and temperature. Figure 2 shows the dependence of
small-signal permittivity«nc on the Ti content at room tem-
perature. It can be seen that the permittivity varies nonmono-
tonically with the composition of solid solution, reaching its
maximum value of«nc<640 at the Ti contentx<98.5%.
However, there is no dielectric anomaly at the boundary be-
tween the rhombohedral field and the region of phase coex-
istenceRr+t in the stability diagram.

For the better understanding of the above results, we also
calculated the theoretical dielectric responses of individual
PZT crystallites. Assuming that the crystallite is free of in-
ternal stresses and domain walls, we found the permittivities
«i and«' in the directions parallel and perpendicular to the
spontaneous polarization to vary with the Ti content as
shown in Fig. 2. Although the transverse dielectric response
«' increases drastically near the MPB, the permittivity«nc of
nanocrystalline PZT remains moderate in this range of com-
positions, showing only a weak broad maximum aroundx
=50%. On the other hand,«nc appears to be about three times
higher than the single-crystal responses«i and «' at x
ù75%. This result demonstrates that the elastic clamping
may strongly increase the intrinsic dielectric response of a
ferroelectric crystallite.

For nanocrystalline BT ceramics, numerical calculations
were performed using the dielectric stiffnessesa1, ai j , and
ai jk, electrostrictive constantsQijkl , and elastic compliances
sijkl

P listed in Ref. 44.sThe stiffnessesa1, a11, anda111 of BT
linearly depend on temperature.44d Depending on tempera-

FIG. 2. Dielectric response«nc of a nanocrystalline PbsZr1−xTixdO3 ceramic
ssolid lined in comparison with the permittivities«i and «' of a single-
domain stress-free crystallitesdashed linesd. The temperature is taken to be
25 °C. The permittivities«i and «' in the directions parallel and perpen-
dicular to the polarization vector were calculated from the theoretical ther-
modynamic parameters of PbsZr1−xTixdO3 given in Ref. 33.
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ture, the clamped single-domain ferroelectric crystallites
were found to stabilize in the rhombohedral, orthorhombic,
or tetragonal state. The low-temperature rhombohedral phase
represents the energetically most favorable state up to 19 °C
in contrast to the stress-free single crystal, where this phase
is stable only below −71 °C.32 Moreover, at temperatures
ranging from 19 to 55 °C, the nanocrystalline BT ceramic
contains a mixture of rhombohedral and orthorhombic crys-
tallites. The volume fraction of rhombohedral phase gradu-
ally decreases with increasing temperature in this range,
whereas the fraction of orthorhombic crystallites increases
accordinglyssee Fig. 3d. Just aboveT<55 °C, the structure
of nanocrystalline ceramic transforms into the mixture of
orthorhombic and tetragonal crystallites. Unfortunately, at
temperatures above 60 °C, it becomes impossible to find a
self-consistent solution for the ceramic properties with the
aid of our iterative procedure. Nevertheless, the above results
clearly demonstrate that, in the most important temperature
range around 20 °C, the phase state of a nanocrystalline BT
ceramic differs drastically from that of a single crystal,
where the tetragonal phase is stable above 10 °C.32

Our theoretical predictions may be compared with the
experimental data obtained for nanocrystalline BT ceramics
by Frey and Payne.11 Using high-resolution scanning elec-
tron microscopy, these authors found that BT ceramics with
the grain sizegø100 nm are free of non-180° domains
stwinsd, whereas atg=400 nm some grains are twinned.
These observations support our theoretical estimateg*

<300 nm of the critical grain size in BT polycrystals. The
x-ray diffractionsXRDd investigations, which were based on
the examination of theh200j pseudocubic reflections,
showed the absence of tetragonal lattice distortions in ceram-
ics with grain sizes below 100 nm. The Raman-scattering
data, however, indicated the existence of orthorhombic struc-
ture in these ceramics at room temperature rather than the
cubic one, which agrees with one of our predictions. The
presence of additional rhombohedral crystallites here also

cannot be ruled out because the formation of the rhombohe-
dral phase does not lead to the splitting of theh200j
reflections.45

For the macroscopic dielectric response of unpolarized
nanocrystalline BT ceramics, we obtained the results pre-
sented in Fig. 4. In contrast to the dielectric behavior of BT
single crystals,32 the permittivity varies monotonically with
increasing temperature. Since the grain boundaries are
known to reduce the measured permittivity of BT
ceramics,46–49we estimated the grain-boundary effect on the
dielectric response in addition to its temperature dependence.
Assuming that grain boundaries have a low permittivity«d

and an effective thicknessd, the aggregate macroscopic re-
sponse«nc

d of a polycrystal can be evaluated as

«nc
d sgd <

3«ds«nc + 2«dd

«nc + 2«d − s«nc − «ddS1 −
2d

g
D3 − 2«d, s36d

where«nc is the permittivity of a perfect nanocrystalline ce-
ramic havingd=0. Equations36d is based on the relation
derived in Ref. 49 and on the assumption that the average
permittivity of the grain interior may be approximated by
«nc. Calculating the temperature dependence of«nc numeri-
cally and using the values«d=100 andd=0.7 nm given in
Ref. 49, we obtained the set of curves plotted in Fig. 4. At
temperatures below 19 °C, where nanocrystalline BT ceram-
ics stabilize in the rhombohedral phase, the grain-boundary
effect on the macroscopic dielectric response«nc

d is relatively
small. With the increase of temperature, however, the sup-
pression of«nc

d by the low-permittivity grain boundaries in-
tensifies. AtT<50 °C andg=70 nm, for instance,«nc

d be-

FIG. 3. Equilibrium volume fractions of the rhombohedralsRHd, ortho-
rhombic sORd, and tetragonalsTd phases in nanocrystalline BaTiO3 ceram-
ics as a function of temperature.

FIG. 4. Temperature dependence of permittivity calculated for nanocrystal-
line BaTiO3 ceramics of different grain sizes. The upper curve corresponds
to a perfect ceramic, where grain boundaries do not suppress the macro-
scopic dielectric response. Three other curves describe the grain-size effect
on the permittivity«nc

d of a ceramic with structurally disordered layers be-
tween crystallites. Squares show the experimental data obtained for BaTiO3

ceramics in Ref. 47. Numbers indicate the grain size in nanometers. The
predicted crystal structure of a nanocrystalline BaTiO3 ceramic is denoted
by RH srhombohedral phased, RH+ORsmixture of rhombohedral and ortho-
rhombic crystallitesd, and OR+Tsmixture of orthorhombic and tetragonal
crystallitesd.
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comes about two times smaller than the “perfect”
permittivity «nc.

Our theoretical results may be compared with the mea-
sured dielectric properties of nanocrystalline BT
ceramics.47,48 At the minimum studied grain sizeg=40 nm,
the room-temperature dielectric response was found to be
about 900.47The corresponding theoretical value of«nc

d

<1300 is in reasonable agreement with the measured per-
mittivity. The predicted grain-size dependence of the dielec-
tric response shows the same trend as the observed onessee
Fig. 5d, but the difference between the theoretical and experi-
mental values becomes larger with increasing grain size.
There are several possible reasons which may explain why
the theory underestimates the ceramic permittivity. We be-
lieve that the inhomogeneity of internal stresses inside real
grains of irregular shape, which was neglected in our model,
may result in a higher measured dielectric response.

V. CONCLUSIONS

s1d In nanocrystalline ferroelectric ceramics, the equilibrium
phase states of elastically clamped crystallites may differ
drastically from those of single crystals and coarse-
grained materials. This is due to the lack of stress relax-
ation via domain formationstwinningd, which becomes
energetically unfavorable below some critical grain size.

s2d The phase diagram of nanocrystalline PbsZr1−xTixdO3

ceramics is distinguished by the presence of a wide
range of compositions and temperatures, where a mix-
ture of rhombohedral and tetragonal crystallites repre-
sents the energetically most favorable thermodynamic
state. This region of phase coexistence substitutes the
morphotropic phase boundary characteristic of conven-
tional PbsZr1−xTixdO3 ceramics.

s3d In nanocrystalline BaTiO3 ceramics, the stability range
of the low-temperature rhombohedral phase extends up

to about 19 °C. Above this temperature, ceramics con-
tain a mixture of rhombohedral and orthorhombic crys-
tallites, which transforms into a mixture of orthorhombic
and tetragonal crystallites at about 55 °C.

s4d The dielectric properties of nanocrystalline ferroelectric
ceramics may differ markedly from those of conven-
tional materials owing to the elastic clamping of single-
domain crystallites. In the case of PbsZr1−xTixdO3 ce-
ramics with xù0.75, the mechanical grain/grain
interaction strongly increases the intrinsic dielectric re-
sponse of ferroelectric crystallites.

ACKNOWLEDGMENT

The research described in this publication was made pos-
sible in part by Grant No. I/75965 from the Volkswagen-
Stiftung, Germany.

1N. Setter and R. Waser, Acta Mater.48, 151 s2000d.
2H. Kniepkamp and W. Heywang, Z. Angew. Phys.9, 385 s1954d.
3K. Kinoshita and A. Yamaji, J. Appl. Phys.47, 371 s1976d.
4G. Arlt, D. Hennings, and G. de With, J. Appl. Phys.58, 1619s1985d.
5G. Arlt, J. Mater. Sci.25, 2655s1990d.
6M. P. McNeal, S.-J. Jang, and R. E. Newnham, J. Appl. Phys.83, 3288
s1998d.

7K. Ishikawa, K. Yoshikawa, and N. Okada, Phys. Rev. B37, 5852s1988d.
8K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc.72, 1555
s1989d.

9M. de Keijser, G. J. M. Dormans, P. J. van Veldhoven, and D. M. de
Leeuw, Appl. Phys. Lett.59, 3556s1991d.

10M. H. Frey and D. A. Payne, Appl. Phys. Lett.63, 2753s1993d.
11M. H. Frey and D. A. Payne, Phys. Rev. B54, 3158s1996d.
12H.-I. Hsiang and F.-S. Yen, J. Am. Ceram. Soc.79, 1053s1996d.
13L. A. Bursill, B. Jiang, J. L. Peng, T. L. Ren, W. L. Zhong, and P. L.

Zhang, Ferroelectrics191, 281 s1997d.
14R. Kretschmer and K. Binder, Phys. Rev. B20,1065s1979d.
15S. Li, J. A. Eastman, Z. Li, C. M. Foster, R. E. Newnham, and L. E. Cross,

Phys. Lett. A 212, 341 s1996d.
16S. Li, J. A. Eastman, J. M. Vetrone, C. M. Foster, R. E. Newnham, and L.

E. Cross, Jpn. J. Appl. Phys., Part 136, 5169s1997d.
17I. I. Ivanchik, Sov. Phys. Solid State3, 2705s1962d.
18I. P. Batra and B. D. Silverman, Solid State Commun.11, 291 s1972d.
19H. Huang, C. Q. Sun, Z. Tianshu, and P. Hing, Phys. Rev. B63, 184112

s2001d.
20W. R. Buessem, L. E. Cross, and A. K. Goswami, J. Am. Ceram. Soc.49,

33 s1966d.
21E. M. Pikalev and V. I. Aleshin, Sov. Phys. Solid State31, 2079s1989d.
22N. A. Pertsev and E. K. H. Salje, Phys. Rev. B61, 902 s2000d.
23M. Marutake, J. Phys. Soc. Jpn.11, 807 s1956d.
24A. V. Turik and A. I. Chernobabov, Sov. Phys. Tech. Phys.22, 1127

s1977d.
25V. I. Aleshin, Kristallografiya32, 422 s1987d.
26V. I. Aleshin and E. M. Pikalev, Zh. Tekh. Fiz.60, 129 s1990d.
27T. Olson and M. Avellaneda, J. Appl. Phys.71, 4455s1992d.
28M. L. Dunn, J. Appl. Phys.78, 1533s1995d.
29C.-W. Nan and D. R. Clarke, J. Am. Ceram. Soc.79, 2563s1996d.
30N. A. Pertsev, A. G. Zembilgotov, and R. Waser, J. Appl. Phys.84, 1524

s1998d.
31A. F. Devonshire, Philos. Mag.40, 1040s1949d.
32F. Jona and G. Shirane,Ferroelectric CrystalssMacmillan, New York,

1962d.
33M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics99, 13

s1989d.
34M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross, J.

Appl. Phys. 62, 3331s1987d.
35J. D. Eshelby, Proc. R. Soc. London, Ser. A241, 376 s1957d.
36B. Wang, Int. J. Solids Struct.29, 293 s1992d.
37Y. Benveniste, J. Appl. Phys.72, 1086s1992d.
38A. V. Turik, Sov. Phys. Solid State12, 688 s1970d.

FIG. 5. Room-temperature dielectric response of a nanocrystalline BaTiO3

ceramic as a function of the grain size. Solid line shows the theoretical
dependence, whereas squares denote the experimental values given in Ref.
47.

114315-8 Zembilgotov, Pertsev, and Waser J. Appl. Phys. 97, 114315 ~2005!

Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



39N. A. Pertsev and G. Arlt, Ferroelectrics123, 27 s1991d.
40To estimate the critical grain sizeg* for BaTiO3, we also assumed that the

90° domain-wall energyg in this ferroelectric is about 0.03 J/m2. This
value was obtained by comparing the theoretical grain-size dependence of
the domain width, which was derived in Ref. 39, with the experimental
data given in Ref. 5. The least-square fitting of these data with varying
parameterg shows that the best agreement is achieved atg=0.03 J/m2.

41N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, and R. Waser, Phys. Rev. B67,
054107s2003d.

42B. Jaffe, W. R. Cook, and H. Jaffe,Piezoelectric CeramicssAcademic,
London, 1971d.

43S. H. Oh and H. M. Jang, Phys. Rev. B63, 132101s2001d.
44N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Ferroelectrics

223, 79 s1999d.
45It should be noted that the lattice structure of extremely small crystallites

may differ from that predicted by our theory. This is due to the fact that we
neglected the presence of surface layers with altered physical properties in
ferroelectric crystallites and the influence of these layers on the interior.

46D. A. Payne and L. E. Cross, inMicrostructure and Properties of Ceramic
Materials, edited by T. S. Yen and J. A. PasksScience, Beijing, 1984d.

47M. N. Frey, Ph.D. thesis, University of Illinois at Urbana-Champaign,
1996 sunpublishedd.

48M. H. Frey, Z. Xu, P. Han, and D. A. Payne, Ferroelectrics206–207, 337
s1998d.

49A. Yu. Emelyanov, N. A. Pertsev, S. Hoffmann-Eifert, U. Böttger, and R.
Waser, J. Electroceram.9, 5 s2002d.

114315-9 Zembilgotov, Pertsev, and Waser J. Appl. Phys. 97, 114315 ~2005!

Downloaded 15 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


