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Abstract. In this study, ILAS-II (Improved Limb Atmospheric Spectrometer)

measurements were used to analyze chemical ozone loss during the entire Antarctic

winter 2003, using the tracer-tracer correlation technique. The temporal evolution

of both the accumulated local chemical ozone loss and the loss in column ozone

in the lower stratosphere is in step with increasing solar illumination. Half of the

entire loss in column ozone of 157 DU occurred during September 2003. By the end

of September 2003, almost the total amount of ozone was destroyed between 380

and 470 K. Further, ozone loss rates were strongly increasing during September for

the entire lower stratosphere. The values of accumulated ozone loss and ozone loss

rates strongly depend on the altitude. During September, ozone mixing ratios show

a large day to day variation. Box model simulations by the Chemical Lagrangian

Model of the Stratosphere (CLaMS) show that this is a result of the different

history of the observed air masses. Further, the box model supports the general

evolution of ozone loss values during September as a result of strong increase of

halogen catalyzed ozone destruction.
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1. Introduction

Chemical ozone loss in the lower polar stratosphere has been a research

focus since the discovery of the Antarctic ozone hole in the mid-eighties [Farman

et al., 1985]. Severe chemical ozone destruction during the winter period in the

Antarctic and, in recent cold winters, also in the Arctic is a result of anthropogenic

emissions of long-lived halogen compounds (in particular CFCs and halons) to

the atmosphere. Chlorine reservoir species (in particular HCl and ClONO2) are

activated mainly on the surface of polar stratospheric clouds (PSCs) that exist in

a sufficiently cold winter polar stratosphere. The resulting photo-labile forms of

chlorine are photolyzed upon exposure to sunlight. In spring, even at low sun,

effective ozone destroying catalytic cycles [Molina and Molina, 1987; McElroy

et al., 1986; Solomon et al., 1986] cause significant ozone loss.

During the past decade, the analysis of ozone loss and related processed in

the stratosphere in polar regions has mainly focused on the Arctic [e.g., Müller

et al., 1999; Rex et al., 2004; Goutail et al., 2003; Manney et al., 2003; Tilmes

et al., 2003, 2004; Harris et al., 2003, and references therein]. Various methods

were used to derive chemical ozone loss and chlorine activation and their relation to

meteorological conditions [e.g., Rex et al., 2002; Harris et al., 2002; Tilmes et al.,

2004]. Further, various model studies were performed to investigate Arctic and

Antarctic winter ozone loss. Especially the Arctic early winter chemical ozone loss

and the ozone loss above the 475 K potential temperature level was underestimated

by models [e.g., Becker et al., 1998, 2000; Rex et al., 2003]. Discrepancies between

model and measurements still exist, although recent studies indicate that models

are able to reproduce Arctic ozone loss [Chipperfield et al., 2005]. Further, Brasseur

et al. [1997] reported that their model does reproduce the Antarctic total column

ozone depletion as observed by TOMS.

In that study by Brasseur et al. [1997], the maximum of observed total

ozone depletion over the Antarctic is in agreement with satellite measurement.

However, besides continuous total column ozone measurements (e.g., by TOMS),
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no continuous data set of mixing ratios of different species, as ozone, were available

over an entire Antarctic winter, to compare model results.

Using measurements of O3 and N2O by the ILAS-II instrument aboard the

ADEOS-II satellite, it is possible for the first time, to estimate chemical ozone

loss continuously over an entire Antarctic winter using tracer-tracer correlations.

The temporal development of local accumulated ozone loss will be analyzed, as

well as the accumulated loss in column ozone. A comparison with meteorological

conditions will be conducted using UK meteorological analysis for different altitude

ranges.

The continuous ILAS-II data set further allows deriving ozone loss rates per

day within the polar vortex at different altitude intervals. These values can be

compared to the ozone loss rates that will be deduced from the results of the first

Match ozone sonde campaign in the Antarctic that was conducted during winter

2003 (P. v. d. Gathen, pers. comm.). Additionally, the ILAS-II observations

during September, 2003, will be compared with results of a box model simulation

of the Chemical Lagrangian Model of the Stratosphere (CLaMS) [McKenna et al.,

2002b, a], to scrutinize the large ozone loss values derived for September, 2003.

2. ILAS-II Measurements and Method

The ILAS-II (Improved Limb Atmospheric Spectrometer) instrument aboard

ADEOS-II (Advanced Earth Observing Satellite) observed the entire Antarctic

winter 2003 continuously from April 2 to October 24, 2003 [Nakajima et al., 2005].

The occultation satellite instrument is measuring sunrise and sunset data up to

14 times per day. The sunset mode of the instrument covers the area of the polar

vortex very well during the entire austral winter and spring (Figure 1) and is

therefore well suited to observe chemical ozone loss. Poleward of the latitude of the

measurement location (Figure 1, gray area) the earth was not illuminated between

April and mid-September. Figure 1.

The ILAS-II Version 1.4 data set (the first public release) includes O3, HNO3,
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N2O, CH4, and aerosol extinction coefficient at 780 nm data from cloud top up

to 70 km. Vertical profiles of other atmospheric trace gases such as NO2, H2O,

ClONO2 and N2O5, were also retrieved during the entire measurement period (not

validated yet).

In this study, the tracer-tracer correlation method [e.g., Proffitt et al., 1990;

Müller et al., 2001; Tilmes et al., 2003, 2004] is used to calculate chemical ozone

loss. Using this method, deviations from an early winter reference function derived

for chemically unperturbed conditions in an established vortex are used to identify

chemical ozone loss. Here, N2O can be used as the long-lived tracer. Although

there is an offset of N2O ILAS-II Version 1.4 data compared to ODIN/SMR

(v1.2) (Sub-Millimeter-Radiomenter) for N2O mixing ratios less than 100 ppbv,

this offset does not show any seasonal change [Ejiri et al., 2005; Urban et al.,

2005]. A constant offset of the long-lived tracer used will not affect the results of

tracer-tracer correlation analysis.

3. Meteorology of the Antarctic Winter 2003
Figure 2.

The Antarctic vortex started forming during March 2003 [Tilmes et al., 2005b],

at the time when an edge of the vortex started to exist using the algorithm by

[Nash et al., 1996]. During the setup phase of the vortex, two relative maxima

of the gradient of potential vorticity exist using UK meteorological analysis.

The vortex was partly separated in two regions, one region was located within

equivalent latitudes equatorward of 70◦S and another within the region poleward of

70◦S equivalent latitude (inner vortex) [Tilmes et al., 2005b]. On the basis of that

study, the polar vortex edge was calculated for these two separate regions as well.

During April to October 2003, a continuous polar vortex edge could be determined

equatorward of 70◦S at altitudes between the 475 and 650 K potential temperature

level (Figure 2). The potential vorticity at the edge of the vortex is increasing until

mid-July (Figure 2, solid lines). An indication of a disturbance of the vortex is

noticeable during the second part of July, because the potential temperature of the
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edge of the vortex significantly decreases at 650 K. However, at altitudes below 650

K the potential vorticity at the edge of the vortex is still increasing until October,

2003, and no minor warming was observed in this winter [pers. comm. M. Streibel].

Additionally to the vortex edge, an inner vortex edge was determined poleward of

70◦S, for certain time intervals. An inner edge was found for the setup phase of

the vortex [Tilmes et al., 2005b], at the time of a slightly disturbed vortex in July

and at the end of September and in October, 2003, at altitudes of 650 K. During

November, only an inner vortex edge could be determined using the Nash et al.

[1996] criterion at altitudes above 550 K. At this time the vortex is breaking down

although vortex remnants continue to exists until the end of November. Figure 3.

The area of possible PSC existence (APSC) deduced from analyzed stratospheric

temperatures and sun light hours per day have an influence on chemical ozone loss

within the lower stratosphere [Tilmes et al., 2004]. In this study, we will use these

values for the interpretation of chemical ozone loss values.

The PSC threshold temperature was calculated with averaged mixing ratios of

ILAS-II HNO3 and H2O measurements. Using a HNO3 mixing ratio of 10 ppbv

and a H2O mixing ratio of 5 ppmv, as it is done for Arctic conditions [Tilmes et al.,

2005a], APSC is a factor 0,28 larger than deduced using ILAS-II measurements.

Thus the decrease of HNO3 and H2O mixing ratios, cause by the impact of

denitrification and dehydration, on the threshold temperature for PSCs should be

included in the calculation of APSC for Antarctic conditions.

Additionally, in the Antarctic winter 2003, measurement of daily mean PSC

cloud top heights of the Michelson Interferometer for Passive Atmospheric Sounding

(MIPAS) aboard ENVISAT [Spang et al., 2005] are available (Figure 3, black plus

signs). Additional to APSC, these measurements are a precise information about

PSC occurrence.

Calculated APSC and actually detected mean PSC cloud top heights by MIPAS

are in general agreement. Stratospheric temperatures reached the threshold for

PSC existence since mid-May until the end of September 2003 (Figure 3). First
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Sulfuric Ternary Solutions (STS) particles were measured at the end of May by

MIPAS and first Nitric Acid Trihydrate (NAT) particles in June 10–12, 2003 at

altitudes below 24 km (≈ 650 K). Since July 20, mean cloud top hight detected

by MIPAS are below 580 K. With the descent of the vortex air masses, mean PSC

cloud top heights are significantly decreasing from 570 K to 400 K during August.

During the entire September 2003, a APSC was calculated at altitudes below 500 K

and MIPAS mean cloud top heights of PSC are below 470 K.

4. Tracer-tracer Correlations Figure 4.

Chemical ozone loss in the polar vortex can be derived from satellite

measurements in using the tracer-tracer correlation technique [e.g., Proffitt et al.,

1990; Müller et al., 1996; Tilmes et al., 2004]. Using this technique, an early winter

reference function for the ozone-tracer relation in the established polar vortex is

derived. Deviations from this reference function can be attributed to chemical ozone

loss, because transport processes can be excluded using tracer-tracer correlations

within an isolated vortex [Müller et al., 2001; Tilmes et al., 2003, 2004; Müller

et al., 2005].

The evolution of the incipient Antarctic polar vortex between March and June

2003 is discussed in detail in Tilmes et al. [2005b]. In that study it is shown that

tracer-tracer correlations throughout the entire vortex are compact and constant

by mid-June, 2003, and that the vortex core is isolated at that time. At this time

of the year, during the polar night, no chemical ozone loss is expected to occur.

Therefore, a reference for chemically unperturbed conditions is derived for in June

11–20, 2003 from ILAS-II measurements that are located in the Antarctic polar

vortex core (see Figure 4, panel a, black line).

Although, ILAS-II profiles are located at rather low geographical latitudes

up to 65◦S (see Figure 1), the equivalent latitudes of these measurements range

between 65 and 90 ◦S (see Figure 4, panel a). This is the case because the vortex

core is not steadily located above the geographic South pole but is sometimes
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shifted towards lower geographical latitudes. All these profiles are used to derive

the early winter reference function.

To allow a precise comparison of ILAS-II measurements with the synoptic

meteorological data, the position of ILAS-II profiles are converted to noon time

using trajectory calculations based on UKMO wind data [Tilmes et al., 2003].

Using N2O as a long-lived tracer (mixing ratios in ppbv) and O3 (mixing ratios

in ppmv) the early winter reference function (valid for range 10 ppbv < N2O < 300

ppbv) is derived as:

O3 = 1.81 · 10−9
· (N2O)4

− 8.40 · 10−7
· (N2O)3 + 6.43 · 10−5

· (N2O)2 (1)

−1.72 · 10−3
· (N2O) + 3.12

The scatter of profiles inside the polar vortex measured by the standard deviation

is estimated to be σ = 0.2 ppmv.

Ozone mixing ratios of profiles located poleward of an equivalent latitude of

80◦S scatter up to 0.5 ppmv below the derived reference function for altitudes

above the 100 ppbv N2O level (Figure 4, panel a, green profiles) possibly as a result

of a slight isolation between a previously existing inner vortex within the entire

vortex. An overestimation of chemical ozone loss of profiles located poleward of an

equivalent latitude of 80◦Sis therefore possible, but included within the range of

uncertainty. of the reference function. Note however that the air mass poleward of

80◦S constitutes only about 25% of the air mass poleward of 70◦S.

By mid-July 2003, significant deviations from the early winter reference

function occur (not shown) and at the beginning of August all profiles measured

inside the vortex core scatter below the early winter reference function (Figure 4,

panel b); including profiles located poleward of equivalent latitude of 80◦S.

During August and September, the signature of chemical ozone loss in the

evolution of tracer-tracer profiles is becoming clearly noticeable (Figure 4, panel

b to g). During August, the strongest deviations from the reference occur for

profiles located towards lower equivalent latitudes, between 70◦S and 80◦S (red

and blue profiles). This is because these profiles are influenced by a larger amount
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of sunlight that enhances ozone destruction. During September 20–30, rather

suddenly, all profiles inside the polar vortex core indicate a very strong decrease of

ozone mixing ratios towards zero (see Figure 4, panel g). The temporal evolution

of ozone loss during the second part of September will be discussed in detail below

in Section 5.2. During October 2003, very low ozone mixing ratios were reached

– between 0.0 and 0.4 ppmv between the 80–240 ppbv N2O level – for all profiles

measured inside the Antarctic polar vortex.

5. Accumulated Ozone Loss

The accumulated local ozone loss is ozone loss that occurred in the period

between the time of the early winter reference function and the date considered to

derive the ozone loss. Ozone loss is derived over an altitude interval between 350

and 600 K potential temperature. For interpretation of a large scatter of ozone loss

profiles, daily variations of ozone mixing ratios will discussed as well. Additionally,

we show the temporal evolution of local ozone loss averaged within certain altitude

ranges, smoothed over 10 days. The results will be discussed and compared with

meteorological analyses. Further, the temporal evolution of loss in column ozone

derived between 350 and 600 K will be shown.

5.1. Local Ozone Loss Profiles Figure 5.

The temporal evolution of accumulated local ozone loss profiles can be followed

during the entire Antarctic winter 2003 using ILAS-II measurements. In Figure 5,

vertical ozone profiles measured within the vortex core (red lines) and estimated

ozone loss profiles (black lines) are shown for a period of ten days in each panel to

give an overview.

The early winter reference function was derived for June 11–20, 2003. At

this time, the ozone loss profiles do not show any ozone loss, as expected. Solely,

two profiles that are located poleward of the equivalent latitude of 80◦S show an

ozone loss (∆O3) of ≈ 0.5 ppmv for altitudes above about 500 K. As described in
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Section 4, this observation should not be attributed to chemical ozone loss.

Beginning in August, significant local ozone loss occurred (Figure 5, black

lines), at altitudes between 350 and 600 K potential temperature. At the end of

August, the average of local ozone loss between 400 and 550 K is 0.79 ppmv with a

standard deviation of 0.31 ppmv. During mid-August, a maximum of accumulated

ozone loss of 1.5 ppmv occurred at altitudes between 460 and 520 K potential

temperature.

During September, ozone loss profiles show a much stronger scatter compared

to August, 2003. The standard deviation of local ozone loss profiles in the first

half of September reaches 0.37 ppmv. In the second half of September, loss profiles

scatter less, however, inside the vortex core a separation of ozone loss profiles is

obvious between 400 and 500 K during September 21–30, 2003 (Figure 5). On

the one hand, maximum ozone loss values less than ≈ 2.3 ppmv were measured

before March 25, and, on the other hand maximum local ozone loss larger than 2.3

ppmv was measured after March 25. We will discuss this in detail in Section 5.2.

The averaged local ozone loss between 400 and 550 K is 2.3 ppmv. At the end

of September, a maximum local ozone loss of 2.8 ppmv was reached at ≈ 475 K

potential temperature with an average of 2.5 between 400 and 550 K.. Since the

beginning of October, chemical local ozone loss is very homogeneous for all profiles

measured by ILAS-II and the maximum and averaged local ozone loss has not

increased after the end of September, however the standard deviation has decreased

towards 0.08 ppmv. Ozone mixing ratios were not decreasing any more during

October.

5.2. Daily Variations of Ozone Mixing Ratios
Figure 6.

In this section, the strong variability of vertical ozone loss profiles during

September (Figure 5) will be discussed. Figure 6, bottom panel, shows the ozone

mixing ratios for two potential temperature levels, at 500 K and 550 K, between

September 5–10, observed within the vortex core. Strong daily variations of ozone

mixing ratios of about 1 ppmv are obvious that cannot be explained by differences
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in equivalent latitude. To investigate this findings in more detail, backward

trajectory calculations were performed starting at the observations.

Some of the 20 day back trajectories of observed air masses did stay close to

the pole while others originated from low latitudes. Figure 6, top panel, shows the

fraction of time at which each air parcel has been in sunlight (solar zenith angle

< 95◦). The sunlight fraction of the back trajectory of the observations is varying

between 8% and 45%. Indeed it is obvious that air masses with high sunlight

fraction – that obtained more sunlight – correspond to the observations of low

ozone mixing ratios and vice versa.

Further, the amount of illumination controls the amount of ClONO2 mixing

ratio. If large ClO mixing ratios prevail, the ClONO2 production is controlled by

the production of NO2 from photolysis (and reaction with OH) of HNO3. ClONO2

mixing ratios were larger if the observed air mass was illuminated more strong

during 20 days before the measurements time (not shown). As long as some

amount of chlorine is still activated, larger ClONO2 correspond to smaller ozone

mixing ratios occurring for larger illumination. Therefore, at this time of the year,

the large variation of ozone mixing ratios and ozone loss values is a result of the

different history of observed air masses. Figure 7.

Until in September 24, 2003, the variability of sunlight time fraction of

backward trajectories has decreased (Figure 7, top panel), since all vortex air was

exposed to a significant amount of sunlight. In correspondence, the variability of

ozone mixing ratios and therefore the variability of ozone loss values is decreasing

as well.

Back-trajectory analysis further indicate that between September 24–26, the

characteristics of airmass history have changed. The latitude over the last 20 days

of the observed air parcels at 500 K potential temperature has changed from 85◦S

± 3 ◦S at September 24, to 75◦S ± 4.◦S at September 26 (Figure 7). Therefore,

airmasses observed before September 24 and after September 26 are not necessary

comparable and the day-to-day variations in ozone should not be interpreted as
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chemical change between September 24 and 26, 2003. Further, larger variations in

sunlight time between September 24–26 is becoming obvious compared to some

days before (Figure 7). However, at this time, the air masses indicating the lowest

ozone mixing ratios received the smallest number of sunlight hours during 20 day

before the measurement. This is in contrast to the anti correlation between ozone

mixing ratios and sunlight time that was found during the first part of September.

In late September, the stronger illumination of air masses has possibly resulted in

an almost complete chlorine deactivation and therefore less ozone loss values.

From September 26 on, the history of air masses has changed compared

to September 24 (Figure 7). Ozone mixing ratios are rather homogeneous and

are slightly increasing with decreasing averaged latitudes for 20 day backward

trajectories and increasing solar illumination between September 26 and 30.

To remove the effect of the explained short term variability in ozone mixing

ratios and therefore local ozone loss values, in the following analysis local ozone

loss will be smoothed. However, during September 24–27 (depending on altitude)

local ozone loss values and deduced ozone loss rates may be still influenced by the

observations of not comparable air masses.

5.3. General Evolution of Local Ozone Loss Figure 8.

To describe the general temporal evolution of local ozone loss, the daily

averaged ozone loss values in the vortex core smoothed over a period of 10 days.

This was likewise done for meteorological values as the solar illumination on the

area of PSC existence (APSC) and the possible area of PSC existence (APSC). Four

different altitude ranges, 380–420 K, 430–470 K, 520–560 K, and 580–620 K, are

considered separately (Figure 8).

Chemical ozone loss started in July 2003 for all altitudes considered with

beginning illumination, in accordance with the current understanding of ozone

destruction. Further, chemical ozone loss is expected to correlate with APSC. The

largest APSC was calculated for 380-420 K and 420–470 K and in correspondence,

the largest ozone loss occurred in these altitude regions. Ozone loss of 1.2 ± 0.2
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ppmv was calculated until the beginning of September 2003 for these two altitude

intervals. Until September 22–23, 2003, the ozone loss reached 2.3 ± 0.2 ppmv

below 470 K potential temperature and ozone mixing ratios were below 0.3 ppmv.

After this date, the remaining ozone was almost completely destroyed until the

beginning of October, 2003 (Figure 8, top panel, red line). At altitudes of 430–470

K, ozone loss increased until the beginning of October up to 2.8 ± 0.2 ppmv until

ozone mixing ratios were nearly zero. Thus, almost the total amount of ozone

between 380 K and 470 K was destroyed until the end of September.

For altitude intervals 520–560 K and above, accumulated ozone loss is less,

possible because the APSC is decreasing from July on. Further, mean PSC cloud

top height detected by MIPAS is strongly decreasing during August (Section 3).

Since mid-September, the PSC probability is nearly zero derived using UKMO

analysis at these altitudes and no PSC events were detected by MIPAS during

the entire September. Until September 1, 2003, 0.8 ± 0.2 ppmv ozone loss was

reached in 520–560 K. During the second part of September, 2003, a strong

increase of accumulated ozone loss occurred, up to 1.9 ± 0.2 ppmv until the

beginning of October, 2003. This increase is the largest compared to altitudes

below. In those altitudes ozone loss is not limited by the prevailing ozone mixing

ratios as it is the case at lower altitudes (see Figure 8, red lines). Further, the

ozone loss is enhanced by enhanced solar illumination during this time of the year

(see Section 7, for further discussion). However, as described in Section 5.2, the

increase of accumulated ozone loss is possibly enhanced by the changing air masses

observed during the second half of September, therefore, estimated ozone loss rates

(Section 6) are possibly overestimated.

At 580–620 K, a large APSC was derived using UK meteorological analysis and,

further, PSCs were measured by MIPAS until mid-July, 2003 (Figure 2). At these

altitudes, accumulated ozone loss is almost zero (within the range of uncertainty)

until September, 2003. Only during September some ozone loss occurred that

increases up to 0.4 ± 0.2 ppmv at the beginning of October 2003.
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5.4. Accumulated Ozone Loss in column ozone

Accumulated chemical ozone loss in column ozone is derived by integrating the

ozone loss profiles over a certain altitude range [e.g., Tilmes et al., 2004; Salawitch

et al., 2002]. Here, the altitude range of 350 and 600 K potential temperature is

used, the altitude range over which the halogen catalysed polar ozone loss occurs

(as discussed above). The temporal evolution of chemical loss of column ozone

inside the vortex core is shown in Figure 9. Accumulated ozone loss is smoothed

here over 20 days to eliminate any short term variability. Figure 9.

In addition to ozone loss (black line), the area of possible PSC existence

is shown (blue line), averaged over the same altitude range (350–600 K). First

STSs were detected by MIPAS already in mid-May. The volume of possible PSC

existence increases up to its maximum at the beginning of August and is decreasing

thereafter. Solar illumination at PSC area increases since the beginning of July.

Only with increasing solar illumination, chemical ozone loss started in July 2003 as

expected from the current understanding of polar ozone destruction mechanisms.

At the beginning of September 2003, 79 ± 17 DU ozone were destroyed. This is

half of the entire ozone loss of 157 ± 17 DU that occurred until the beginning of

October 2003. In step with increasing sun hours per day, ozone loss is increasing

during the entire winter until October. About 88% of the proxy ozone (ozone for

chemically unperturbed conditions) is destroyed in 350–600 K at the beginning of

October. As discussed in Section 5.3, the most effective ozone destruction occurred

at altitudes below 470 K.

Loss in column ozone calculated over the altitude range of 380–550 K (115

± 15 DU) can be compared with ozone loss that was derived for very cold Arctic

winters. For example, in the cold winter 1999-2000 with a vortex located close

to the pole, column ozone loss of 83 ± 6 DU inside the vortex core were derived

using HF as a long-lived tracer [Tilmes et al., 2004]. Another cold Arctic winter,

1992–93, with less PSC, but with an increased burden of aerosols reached 100 ± 25

DU. Interestingly, the difference between column ozone loss in cold Arctic winters
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and in the Antarctic winter 2003 is not very large in 380–550 K.

6. Ozone Loss Rates

For calculating ozone loss rates local ozone loss was smoothed over 10 days.

Ozone loss rates were estimated by calculating the difference between local ozone

loss averaged over the entire vortex core of two following days. as discussed above.

Further, the resulting ozone loss rates were again smoothed over ten days, to

reduce day-to-day variations. The resulting ozone loss rates (black line) and the

corresponding standard deviation (dotted black lines) are shown in Figure 10. Figure 10.

Ozone loss rates are greatest during mid-September between 380 and 550 K.

In 380–420 K ozone loss rates indicate a small maximum during mid-August of ≈

35 ± 10 ppbv per day and, further, a strong increase until mid-September up to 58

± 15 ppbv per day. At the beginning of October, ozone loss rates are nearly zero

at 380–420 K, because no ozone is left that could be destroyed.

At 430–470 K, ozone loss rates are similar to those at 380–420 K. However,

slightly smaller ozone loss rates are deduced for the end of August compared

to some weeks before, that may be caused by strongly decreasing APSC. In

correspondence the mean cloud top height detected by MIPAS is below 450 K at

this time. With increasing solar illumination, ozone loss rates are increasing as well

up to 82 ± 10 ppbv per day. The occurrence of PSC events detected by MIPAS at

mid-September in these altitudes may further enhance ozone loss rates (Figure 2).

As in 380–420 K, ozone loss rates are nearly zero at the beginning of October when

ozone is almost completely destroyed.

At 520–560 K, during July and August, ozone loss rates are more variable and

smaller compared to altitudes below, in correspondence with smaller a APSC and

the resulting less chlorine activation. However, a strong increase of ozone loss rates

of up to 90 ± 15 ppbv per day at September 24, occurred at mid-September. These

ozone loss rates are the strongest that are reported in this study. As discussed

in detail in Section 5.2, the history of observed air masses has changed between
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September 24–27, 2003. Therefore, we do not interpret these numbers. At altitudes

below, this effect seems to be less significant, because strongest ozone loss rates

were derived before September, 24, however this potential problem for all altitudes

should be kept in mind when comparing these results with other studies.

At 580–620 K the result of tracer-tracer correlations indicate very low ozone

loss rates until September 2003. At the beginning of September ozone loss rates

of 20 ± 5 ppbv per day and since mid-September ≈ 25 ± 5 ppbv per day were

deduced. This is in correspondence with very little chlorine activation.

7. Comparison with Box Model Simulations

Ozone loss rates derived using tracer-tracer correlations (see Section 6) depend

on the time and altitudes considered. Especially during September 10 to 30, 2003,

a strong increase of ozone loss rates occurs within the altitude range of 380–560 K.

Box model simulations with the Chemical Lagrangian Model of the

Stratosphere (CLaMS) [McKenna et al., 2002b, a] were performed to investigate

chemical ozone loss occurring during September 10 to 30, 2003. The box model

includes all chemical reactions of stratospheric relevance.

Starting at three isentropic levels, 450, 500 and 550 K, two example vortex air

parcel trajectories per level were chosen in a way that the average latitude of the

trajectories is about 80◦S with the standard deviation of the latitude is smallest

and largest, respectively. Therefore, the one example trajectories stays close to

80◦S whereas the other show excursions to lower latitude regions. Along these

trajectories chemical ozone loss is simulated by the CLaMS chemistry module,

whereby the initialization is compiled from ILAS-II data for equivalent latitudes

poleward 75◦S. Further, total inorganic chlorine was derived from a relations with

CH4 [Grooß et al., 2002] and total inorganic nitrogen from a correlation with N2O

[Grooß et al., 2004]. Total inorganic bromine was set to 22 pptv. These simulations

were performed to investigate in how far the observed ozone depletion rate can be

reproduced.



17

The simulated ozone mixing ratios and the corresponding ILAS-II observations

are shown in Figure 11. As explained above, on a specific day, observed Figure 11.

ozone mixing ratios are varying due to the different history of the observed air

masses. However the general amount of ozone depletion is well reproduced be the

simulations between September 10–30, 2003, for the three considered theta levels

(Figure 11). The simulations show that the large ozone loss rates are a result

of long sunlight time and still low temperatures causing very efficient chlorine

catalyzed ozone loss.

Between September 24 and 26, 2003, the large variations of ozone mixing ratios

are a result of changing history of airmasses (Section 5.2) and are not caused by

chemical effects. This effect seems to be most significant at latitudes above 500 K.

However, the model simulated ozone loss rates of ≈ 65 ppbv/day at 450 K between

September 10 and 30,, that is in well agreement with ILAS-II results at 430–470 K

(Figure 10, second panel). The results are also in general agreement with model

simulations of the Antarctic ozone hole by Brasseur et al. [1997]. In that study,

ozone loss rates of 80 ppbv per day were derived during September.

Further, the simulated NO2 and ClONO2 mixing ratios (not shown) are in

general agreement with the – not yet validated – ILAS-II measurements. As

for ozone, variations of the mixing ratios of NO2 and ClONO2 owing to the

different history of air masses inside the vortex, as described in Section 5.2, are not

represented in box model results.

8. Conclusions

Chemical ozone loss was derived using tracer-tracer correlations based on

ILAS-II observations over the entire Antarctic winter 2003. We consider ozone

loss inside the polar vortex core only. The edge of the polar vortex was defined

according to the Nash et al. [1996] criterion; meteorological analysis were taken

from UKMO.

During August, accumulated ozone loss of 0.79 ppmv between 400 and 550 K



18

was derived. During September, the local ozone loss averaged between 400 and

550 K significantly increases up to 2.3 ppmv ozone loss. Between 380 and 470 K

almost the total amount of ozone was destroyed. Ozone mixing ratios indicate a

strong inhomogeneity, with day-to-day variations larger than 1 ppmv during the

first half of September. Backward trajectory calculations have shown, that these

variations are a result of a different history of the observed airmasses, that is in

particular, a strong variation of the amount of sunlight time that the air parcel

has received before the measurement time. In October, local ozone loss became

very homogeneous and reached 2.5 ppmv between 400 and 550 K with a standard

deviation of 0.08 ppmv.

The temporal evolution of local ozone loss and accumulated loss in column

ozone during July and the end of September are in step with increasing solar

illumination on activated air masses. Half of the accumulated loss in column ozone

over the winter (157 DU in 350–600 K) occurs during September, 2003. About 88%

of the proxy ozone was destroyed within this altitude range.

In the present study it is shown, that accumulated ozone loss and ozone loss

rates are strongly dependent on the altitude considered. Although the APSC is

largest at altitudes between 380 and 420 K, accumulated local ozone loss does not

exceed 2.3 ± 0.2 ppmv until September 22–23, 2003, because all the ozone was

already destroyed within this altitude interval. At 430–470 K 2.8 ± 0.2 ppmv ozone

were destroyed until October, 2003. At altitudes above, less ozone loss occurred

(1.9 ± 0.2 ppmv in 520–560 K and only 0.4 ± 0.2 ppmv in 580–620 K).

Ozone loss rates in 380–420 K have a maximum around September 18, 2003,

of 58 ± 15 ppb per day. In 430–470 K 82 ± 10 ppbv per day were reached around

September 19, 2003. Since ozone mixing ratios approach zero, ozone loss rates

will decrease. At 520–560 K and 580–620 K ozone loss is much less compared to

altitudes below and ozone was not destroyed completely, this is in correspondence

with smaller APSC and therefore possible less strong chlorine activation.

Box model results using the CLaMS model reproduce the general temporal
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development of ozone mixing ratios between September 10 to 30, 2003. It is shown,

that large ozone loss rates at the second half of September are a result of halogen

catalyzed destruction enhanced by the strong increase of solar illumination of the

vortex area during this time of the year.

The evolution of ozone loss derived in this study is further of interest

considering the previous Antarctic winter 2002. In 2002, a major warming occurred

at 21 September 2003 [Newman and Nash, 2004] and ozone loss came to a halt

[Hoppel et al., 2003]. Ozone depletions rates in the polar vortex region rapidly

decrease to zero [Grooß et al., 2005]. If such an event would have happened in

winter 2003, 82% of the entire loss in column ozone in 350–600 K would have been

reached. In 380–420 K most of the ozone was already destroyed by September 21,

2003.
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Figure Captions

ILAS−II Latitude, Jan.22 to Oct.24, 2003
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Figure 1. Temporal and spatial coverage of ILAS-II observations in southern latitudes from

January 22 to October 24, 2003. The dark area shows the location were the solar zenith angle

is less than 90o.
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Apr.1 Jul.1 Oct.1

Days (March to November)

0

100

200

300

400
P

ot
en

tia
l V

or
tic

ity

                              

                              

  

  

        475 K outer          475 K inner          550 K outer          550 K inner          650 K outer          650 K inner             

       475 K outer   
       475 K inner   
       550 K outer   
       550 K inner   
       650 K outer   
       650 K inner   

Figure 2. Potential vorticity at the edge of the inner vortex, calculated within the region

poleward of 70◦S equivalent latitude (colored symbols), and at the edge of the outer vortex

calculated within equivalent latitudes equatorward of 70◦S (colored lines), during March to

November 2003. Different colors show different levels: 475 K, 550 K and 650 K,
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function of altitude, is shown for the time period from May to October 2003. The PSC threshold

temperature was calculated with the analyzed UKMO temperatures and pressures together with

averaged mixing ratios of ILAS-II HNO3 and H2O measurements at the corresponding time and

altitude. Daily mean cloud top heights of PSC events detected by MIPAS/ENVISAT are shown

as black plus signs.
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Figure 5. Vertical profiles (plotted against potential temperature) of ozone mixing ratios (red

lines) by ILAS-II. The mixing ratios expected in the absence of chemical change (green lines),

and the difference between expected and observed mixing ratio of ozone (black lines) are shown

for profiles located inside the vortex core using the Nash et al. [1996] criterion. The green

lines were inferred using N2O as the long-lived tracer and the early winter reference functions

Equations 1. derived in June 11–20.
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Figure 6. Sunlight time for 20 day backward trajectory calculations of ILAS-II measurements

inside the vortex core (top panel), September 5-10, 2003. ILAS-II ozone mixing ratios inside

the vortex core (bottom panel).
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Figure 7. Averaged latitude (top panel, sunlight time (middle panel) and ozone mixing ratios

(bottom panel)for 20 day backward trajectory calculations of ILAS-II measurements inside the

vortex core, September 21-30, 2003.
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Figure 8. Temporal evolution of local accumulated chemical ozone loss in ppmv in the vortex

core, between July and October 2003, for different altitude intervals, smoothed over 10 days.

Further shown is the uncertainty of ozone loss (black dashed line), Area of possible PSC ex-

istence (blue line), Sun hours per day on the possible PSC area and measured ozone mixing

ratios.
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ILAS II Ozone Loss in DU in 350−600 K
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Figure 9. Temporal evolution of accumulated chemical loss in column ozone in 350–600 K

inside the vortex core, between July and October 2003 (black line), smoothed over 20 days,

uncertainty of ozone loss (black dashed line), area of possible PSC existence (blue line), proxy

ozone for chemical unperturbed conditions (red line).
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Figure 10. Temporal evolution of local ozone loss rates in ppbv per day averaged over the vor-

tex core, between July and October 2003 (black line), derived from local accumulated chemical

ozone loss (as shown in Figure 8), smoothed over 10 days. Dotted lines indicate the uncertainty

derived from the standard deviation of ozone loss rates. Further, the volume of possible PSC

existence (grey line) and measured ozone mixing ratios (red line) is shown.
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Figure 11. ClaMS box model results for ozone loss in austral spring 2003: equivalent latitude

80 ± 3◦S (red line), 80 ± 7◦S (blue line). ILAS-II measurements /green symbols) at equivalent

latitude > 75◦S.


