000047552 001__ 47552
000047552 005__ 20240708133732.0
000047552 0247_ $$2DOI$$a10.1134/1.1882798
000047552 0247_ $$2WOS$$aWOS:000228012800015
000047552 0247_ $$2ISSN$$a1090-6479
000047552 037__ $$aPreJuSER-47552
000047552 041__ $$aeng
000047552 082__ $$a530
000047552 084__ $$2WoS$$aPhysics, Condensed Matter
000047552 1001_ $$0P:(DE-HGF)0$$aPersheyev, S. K.$$b0
000047552 245__ $$aAtmospheric adsorption effects in hot-wire chemical-vapor-deposition microcrystalline silicon films with different electrode configurations
000047552 260__ $$aBerlin$$bSpringer Science + Business Media$$c2005
000047552 300__ $$a343 - 346
000047552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047552 3367_ $$2DataCite$$aOutput Types/Journal article
000047552 3367_ $$00$$2EndNote$$aJournal Article
000047552 3367_ $$2BibTeX$$aARTICLE
000047552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047552 3367_ $$2DRIVER$$aarticle
000047552 440_0 $$05470$$aSemiconductors$$v39$$x1063-7826
000047552 500__ $$aRecord converted from VDB: 12.11.2012
000047552 520__ $$aHot-wire chemical-vapor-disposition (CVD) thin silicon films are studied by means of dark conductivity, FTIR, hydrogen evolution, and SEM surface characterization. Three types of metastability are observed: (1) long term irreversible degradation due to oxidization processes on the film surface, (2) reversible degradation determined by uncontrolled water and/or oxygen adsorption, and (3) a fast field-switching effect in the film bulk. We propose that this effect is associated with the morphology changes during film growth and an electrical field induced by adsorbed atmospheric components on the film surface. It is found that metastable processes close to the film surface are stronger than in the bulk. (c) 2005 Pleiades Publishing, Inc.
000047552 536__ $$0G:(DE-Juel1)FUEK247$$2G:(DE-HGF)$$aPhotovoltaik$$cE02$$x0
000047552 588__ $$aDataset connected to Web of Science
000047552 650_7 $$2WoSType$$aJ
000047552 7001_ $$0P:(DE-HGF)0$$aSmirnov, V.$$b1
000047552 7001_ $$0P:(DE-HGF)0$$aO'Neill, K. A.$$b2
000047552 7001_ $$0P:(DE-Juel1)VDB13366$$aReynolds, S.$$b3$$uFZJ
000047552 7001_ $$0P:(DE-HGF)0$$aRose, M. J.$$b4
000047552 773__ $$0PERI:(DE-600)1473824-7$$a10.1134/1.1882798$$gVol. 39, p. 343 - 346$$p343 - 346$$q39<343 - 346$$tSemiconductors$$v39$$x1063-7826$$y2005
000047552 8567_ $$uhttp://dx.doi.org/10.1134/1.1882798
000047552 909CO $$ooai:juser.fz-juelich.de:47552$$pVDB
000047552 9131_ $$0G:(DE-Juel1)FUEK247$$bEnergie$$kE02$$lErneuerbare Energien$$vPhotovoltaik$$x0
000047552 9141_ $$y2005
000047552 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000047552 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000047552 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000047552 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000047552 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000047552 9201_ $$0I:(DE-Juel1)VDB46$$d31.12.2006$$gIPV$$kIPV$$lInstitut für Photovoltaik$$x0
000047552 970__ $$aVDB:(DE-Juel1)75043
000047552 980__ $$aVDB
000047552 980__ $$aConvertedRecord
000047552 980__ $$ajournal
000047552 980__ $$aI:(DE-Juel1)IEK-5-20101013
000047552 980__ $$aUNRESTRICTED
000047552 981__ $$aI:(DE-Juel1)IMD-3-20101013
000047552 981__ $$aI:(DE-Juel1)IEK-5-20101013