000047656 001__ 47656
000047656 005__ 20180210140807.0
000047656 0247_ $$2DOI$$a10.1016/j.mssp.2004.09.046
000047656 0247_ $$2WOS$$aWOS:000227056200007
000047656 037__ $$aPreJuSER-47656
000047656 041__ $$aeng
000047656 082__ $$a530
000047656 084__ $$2WoS$$aEngineering, Electrical & Electronic
000047656 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000047656 084__ $$2WoS$$aPhysics, Applied
000047656 084__ $$2WoS$$aPhysics, Condensed Matter
000047656 1001_ $$0P:(DE-Juel1)VDB9869$$aFilimonov, S. N.$$b0$$uFZJ
000047656 245__ $$aStep Permeability Effect and Interlayer Mass-Transport in the Ge/Si(111) MBE
000047656 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2005
000047656 300__ $$a31 - 34
000047656 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000047656 3367_ $$2DataCite$$aOutput Types/Journal article
000047656 3367_ $$00$$2EndNote$$aJournal Article
000047656 3367_ $$2BibTeX$$aARTICLE
000047656 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000047656 3367_ $$2DRIVER$$aarticle
000047656 440_0 $$06475$$aMaterials Science in Semiconductor Processing$$v8$$x1369-8001
000047656 500__ $$aRecord converted from VDB: 12.11.2012
000047656 520__ $$aA simple analytical model of the mass-transport during the initial stage of Ge wetting layer formation on Si(l 11) is developed. The model considers growth of the multilevel Ge islands observed in recent STM studies as evolution of pyramids with two bilayer thickness. The pyramid steps flow together and, as a result, the multilevel island forms if there exists an upward transport of adatoms from the substrate surface to the top of the pyramid. The necessary condition for this is that the step at the pyramid base is permeable for the adatoms (the adatoms with greater probability climb up the step than incorporate into it). The explicit expressions for the step permeability and incorporation coefficients are obtained. It is shown that decreasing step permeability is responsible for the transition from multilevel growth mode to the layer-by-layer formation of the wetting layer which has been observed under the increasing deposition rate or/and decreasing growth temperature. (C) 2004 Elsevier Ltd. All rights reserved.
000047656 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$cI01$$x0
000047656 588__ $$aDataset connected to Web of Science
000047656 650_7 $$2WoSType$$aJ
000047656 65320 $$2Author$$amodels of surface kinetics
000047656 65320 $$2Author$$amolecular beam epitaxy
000047656 65320 $$2Author$$asurface diffusion
000047656 65320 $$2Author$$aSiGe
000047656 65320 $$2Author$$aadatoms
000047656 7001_ $$0P:(DE-HGF)0$$aHervieu, Y. Y.$$b1
000047656 773__ $$0PERI:(DE-600)2029689-7$$a10.1016/j.mssp.2004.09.046$$gVol. 8, p. 31 - 34$$p31 - 34$$q8<31 - 34$$tMaterials science in semiconductor processing$$v8$$x1369-8001$$y2005
000047656 8567_ $$uhttp://dx.doi.org/10.1016/j.mssp.2004.09.046
000047656 909CO $$ooai:juser.fz-juelich.de:47656$$pVDB
000047656 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik$$x0
000047656 9141_ $$y2005
000047656 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000047656 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000047656 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000047656 970__ $$aVDB:(DE-Juel1)75170
000047656 980__ $$aVDB
000047656 980__ $$aConvertedRecord
000047656 980__ $$ajournal
000047656 980__ $$aI:(DE-Juel1)PGI-3-20110106
000047656 980__ $$aI:(DE-Juel1)VDB381
000047656 980__ $$aUNRESTRICTED
000047656 981__ $$aI:(DE-Juel1)PGI-3-20110106
000047656 981__ $$aI:(DE-Juel1)VDB381