001     47656
005     20180210140807.0
024 7 _ |2 DOI
|a 10.1016/j.mssp.2004.09.046
024 7 _ |2 WOS
|a WOS:000227056200007
037 _ _ |a PreJuSER-47656
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Filimonov, S. N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB9869
245 _ _ |a Step Permeability Effect and Interlayer Mass-Transport in the Ge/Si(111) MBE
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2005
300 _ _ |a 31 - 34
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Materials Science in Semiconductor Processing
|x 1369-8001
|0 6475
|v 8
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A simple analytical model of the mass-transport during the initial stage of Ge wetting layer formation on Si(l 11) is developed. The model considers growth of the multilevel Ge islands observed in recent STM studies as evolution of pyramids with two bilayer thickness. The pyramid steps flow together and, as a result, the multilevel island forms if there exists an upward transport of adatoms from the substrate surface to the top of the pyramid. The necessary condition for this is that the step at the pyramid base is permeable for the adatoms (the adatoms with greater probability climb up the step than incorporate into it). The explicit expressions for the step permeability and incorporation coefficients are obtained. It is shown that decreasing step permeability is responsible for the transition from multilevel growth mode to the layer-by-layer formation of the wetting layer which has been observed under the increasing deposition rate or/and decreasing growth temperature. (C) 2004 Elsevier Ltd. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a models of surface kinetics
653 2 0 |2 Author
|a molecular beam epitaxy
653 2 0 |2 Author
|a surface diffusion
653 2 0 |2 Author
|a SiGe
653 2 0 |2 Author
|a adatoms
700 1 _ |a Hervieu, Y. Y.
|b 1
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.mssp.2004.09.046
|g Vol. 8, p. 31 - 34
|p 31 - 34
|q 8<31 - 34
|0 PERI:(DE-600)2029689-7
|t Materials science in semiconductor processing
|v 8
|y 2005
|x 1369-8001
856 7 _ |u http://dx.doi.org/10.1016/j.mssp.2004.09.046
909 C O |o oai:juser.fz-juelich.de:47656
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)75170
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21