001     47657
005     20180210141623.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2005.09.039
024 7 _ |2 WOS
|a WOS:000234132600009
037 _ _ |a PreJuSER-47657
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Filimonov, S. N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB9869
245 _ _ |a Dislocation Networks in Conventional and Surfactant-Mediated Ge/Si(111) Epitaxy
260 _ _ |a Amsterdam
|b Elsevier
|c 2005
300 _ _ |a 76 - 84
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|v 599
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Surface undulations induced by interfacial misfit dislocations in the Ge/Si(l 11) films grown by conventional molecular beam epitaxy and by surfactant-mediated epitaxy with Bi as a surfactant have been analyzed using scanning tunnelling microscopy and elasticity theory. A comparison of the experimentally measured undulation patterns with patterns calculated with elasticity theory leads to identification of the dislocations in both systems as 90 degrees Shockley partial dislocations. Dislocations are primarily arranged into a triangular network in Bi-mediated growth, whereas in conventional epitaxy a strongly disordered honeycomb network prevails. The dislocation density in conventional epitaxy is found to be 30% smaller than in Bi-mediated growth, which is attributed to strong Si-Ge intermixing. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a scanning tunnelling microscopy
653 2 0 |2 Author
|a molecular beam epitaxy
653 2 0 |2 Author
|a elasticity theory
653 2 0 |2 Author
|a strain relaxation
653 2 0 |2 Author
|a dislocations
653 2 0 |2 Author
|a bismuth
653 2 0 |2 Author
|a silicon
653 2 0 |2 Author
|a germanium
700 1 _ |a Cherepanov, V.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB10516
700 1 _ |a Paul, N.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB1226
700 1 _ |a Asaoka, H.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB32659
700 1 _ |a Brona, J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Voigtländer, B.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB5601
773 _ _ |a 10.1016/j.susc.2005.09.039
|g Vol. 599, p. 76 - 84
|p 76 - 84
|q 599<76 - 84
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 599
|y 2005
|x 0039-6028
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2005.09.039
909 C O |o oai:juser.fz-juelich.de:47657
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)75171
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21