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Abstract

Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michel-

son Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite

(MIPAS-E) were made during the cold Arctic winter of 2002/3. Vortex temperatures

were unusually low in early winter and remained favourable for polar stratospheric5

cloud formation and denitrification until mid-January. MIPAS-E observations provide

the first dataset with sufficient coverage of the polar vortex in mid-winter which en-

ables a reasonable estimate of the timing of onset and spatial distribution of denitri-

fication of the Arctic lower stratosphere to be performed. We use the observations

from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by10

Lagrangian Particle Sedimentation) microphysical denitrification modelcoupled to the

SLIMCAT chemical transport model. In addition, the predicted denitrification from a

simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E.

Modelled denitrification is compared with in-vortex NOy and N2O observations from the

balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly ob-15

served by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex

by early January 2003. The DLAPSE model is broadly able to capture both the timing

of onset and the spatial distribution of the observed denitrification. A simple thermody-

namic equilibrium scheme is able to reproduce the observed denitrification in the core

of the vortex but overestimates denitrification closer to the vortex edge. This study also20

suggests that the onset of denitrification in simple thermodynamic schemes may be

earlier than in the MIPAS-E observations.

1. Introduction

The severity of seasonal halogen-catalysed ozone loss in the Arctic lower strato-

sphere is dependent on the prevailing meteorology. Sustained low temperatures are25

well known to promote the heterogeneous activation of halogen reservoirs via polar
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stratospheric clouds (PSCs). The predominant mechanism for the reverse process of

sequestration of ozone-depleting active chlorine (ClOx=ClO + 2 × Cl2O2) in the Arc-

tic is via reaction with NO2 to form ClONO2. Hence a key aspect of activation bal-

ance is the availability of nitrogen species. Denitrification is the irreversible loss of to-

tal reactive nitrogen (NOy=N + NO + NO2 + NO3 + 2N2O5 + HNO3 + ClONO2 + minor5

species) from an airmass by the gravitational sedimentation of NOy-containing par-

ticles. However, HNO3 is the main source of NO2 in the Arctic springtime vortex,

produced either by photolysis or reaction with OH, and its concentration is therefore

particularly important. Several CTM studies have shown that denitrification in mid-

winter can increase springtime Arctic ozone loss by reducing HNO3 concentrations in10

the lower stratosphere, thus reducing the rate of ClOx deactivation and extending the

ozone loss period (e.g. Chipperfield and Pyle, 1998; Waibel et al., 1999; Tabazadeh

et al., 2000; Davies et al., 2002).

Moderate denitrification of the Arctic lower stratosphere has been observed in many

cold winters of the late 1980s and 1990s (e.g. Fahey et al., 1990; Sugita et al., 1998;15

Kondo et al., 2000; Santee et al., 2000). In situ NOy observations from the NASA ER-2

during the cold Arctic winter of 1999/2000 revealed denitrification of an unprecedented

magnitude (Popp et al., 2001). In addition to extensive denitrification, ER-2 flights in

January and February 2000 revealed the presence of very large nitric acid trihydrate

(NAT) particles (up to 20 µm diameter) with very low concentrations (in the range 10
−5

20

to 10
−3

cm
−3

) in the Arctic lower stratosphere (Fahey et al., 2001). Subsequent mod-

elling studies have indicated that the sedimentation of these large NAT particles was

capable of causing denitrification comparable to that observed (Carslaw et al., 2002;

Drdla et al., 2002). Mann et al. (2003) used the microphysical DLAPSE model to

demonstrate that this mechanism may have caused denitrification in a number of other25

cold Arctic winters of the 1990s.

Davies et al. (2005) extended the work of Mann et al. (2003) by comparing the

DLAPSE model against a wide range of observations from three Arctic winters

(1999/2000, 1996/97 and 1994/95). They obtained good agreement by assuming a
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constant volume-average NAT nucleation rate. In two of these winters (1999/2000 and

1996/97), both the magnitude and spatial distribution of observed denitrification were

reproduced by the model, within the constraints of the observations, when a particle nu-

cleation rate derived from observed ER-2 NAT particle size distributions on 20 January

2000 (Northway et al., 2002) was used. However, it was not possible to deduce the on-5

set of denitrification from observations in these winters. In the 1999/2000 Arctic winter,

denitrification occurred between the deployment phases of the SOLVE/THESEO 2000

campaign (Newman et al., 2002) and was essentially complete by the time of the first

ER-2 flight (Davies et al., 2005). In 1996/97, the Improved Limb Atmospheric Spec-

trometer (ILAS) satellite-borne instrument observed HNO3 and N2O during the onset10

of the low temperatures required for PSC formation and for potential denitrification

(Kondo et al., 2000). However, the solar occultation technique used by ILAS restricted

coverage in 1996/97 to a maximum of 14 northern hemisphere profiles per day in a

narrow latitude band (∼67
◦

N in February). The restricted view from ILAS means that

the timing of denitrification inferred by ILAS measurements is likely to be controlled by15

a combination of denitrification and subsequent advection of denitrified airmasses to

the ILAS occultation points (Davies et al., 2005).

Observations of nitric acid (but not N2O) with greater spatial coverage but lower

vertical resolution have been performed for a large number of years by the Mi-

crowave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS).20

Santee et al. (1995) showed that the Antarctic experienced severe denitrification dur-

ing the winter of 1992 whereas a similar decrease in HNO3 did not occur over the Arctic

during the 1992/93 Arctic winter. Subsequent MLS observations for the 5 following Arc-

tic and Antarctic winters demonstrated similar results (Santee et al., 1999). However,

coverage is limited to 80 degrees in each hemisphere but in alternate yaw periods only25

(approx. 35 days). Furthermore, the MLS data are limited by their precision, and the

lack of coincident PSC and tracer information in most years. Most studies, e.g. Santee

et al. (1999) have concentrated on the study of representative climatologies for HNO3

and other retrieved species.
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Therefore, observations of HNO3 within the Arctic polar vortex in winters prior to

2002/3 have been insufficient to accurately determine the timing of onset, the rate of

progression and the spatial distribution of denitrification. These quantities are the key

to confirming that the denitrification mechanism is realistically treated in large-scale

models such as DLAPSE. For example, the onset of denitrification will differ between5

a model that assumes an ice or NAT-mediated mechanism. In addition, Mann et al.

(2002, 2003) proposed that the duration that the vortex is near-concentric with the

region of potential NAT formation controls the extent of denitrification by large NAT par-

ticles. They suggested that under some conditions denitrification can cease even when

large regions of NAT exist. Such an effect might be detectable by examining the on-10

set of denitrification in relation to the meteorological situation. Mann et al. (2002) also

showed that denitrification by low concentrations of NAT would leave the vortex edge

region weakly denitrified when compared with the core of the vortex. High-frequency,

high spatial resolution observations of HNO3/NOy and N2O inside the polar vortex are

required to address these issues.15

The Michelson Interferometer for Passive Atmospheric Sounding on ENVISAT

(MIPAS-E) provides, for Arctic winter 2002/3, an excellent opportunity to study the

issues identified above for denitrification. As described in Spang et al. (2005), MIPAS-

E provides daily observations with coverage of the vortex to the poles due to EN-

VISAT’s sun synchronous orbit and adjustable line-of-sight views. In this paper, we20

use observations of HNO3 and N2O from MIPAS-E during the cold Arctic winter of

2002/3 to examine the onset and spatial distribution of denitrification and test the

DLAPSE/SLIMCAT model. Comparisons are also made with the vertical distribution

of NOy from the in-vortex MarkIV balloon flight in mid-December 2002. DLAPSE has a

full microphysical treatment of NAT particle growth and sedimentation on a vortex-wide25

scale as described in Davies et al. (2005) and used by Mann et al. (2002). We also use

the MIPAS-E observations to test whether the observed distribution of denitrification

can be reproduced by a simple NAT equilibrium scheme, as used in many CTMs.
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2. Description of the MIPAS-E instrument and model

2.1. The MIPAS-E instrument

MIPAS-E is a limb-scanning Fourier transform infra-red (FT-IR) spectrophotometer

aboard the ENVISAT satellite. ENVISAT orbits the Earth once every ∼100 min, re-

sulting in ∼14 polar orbits per day. The IR emission from the Earth’s atmosphere is5

sampled at 3 km intervals from 6 to 42 km (reduced sampling above), corresponding

to the field-of-view and the nominal vertical resolution of the operationally retrieved

data in the lower stratosphere. All MIPAS-E data used in the comparisons presented

are based on level 2 products (V4.53-5) from the near real-time data produced by the

European Space Agency’s (ESA) operational processor. For HNO3 and N2O obser-10

vations in polar regions, it has been estimated that the random errors are <10% and

<20% respectively whilst systematic errors are estimated to be <15% for each species

(Remedios et al., 2005
1
). PSC particles may impact on the retrievals of both these

species, therefore a cloud detection index (CI) for MIPAS-E, as described in Spang

et al. (2005), is used to remove MIPAS-E data which may be affected by the presence15

of PSCs. A CI-threshold of 2.0 at any altitude between 12 and 31 km in a retrieval is

used to reject profiles which may be affected by the presence of PSCs (Remedios et

al., 2005
1
). We also restrict our analysis of MIPAS-E data to those profiles in which the

ECMWF-analysed temperature is greater than TNAT-2 K.

2.2. The DLAPSE/SLIMCAT model20

DLAPSE is a Lagrangian microphysical NAT particle model coupled to a full-chemistry

version of the SLIMCAT CTM (Chipperfield, 1999). DLAPSE calculates the time depen-

dent growth, advection and sedimentation of NAT particles and has been described in

1
Remedios, J. J., Waterfall, A. M., Allen, G., Spang, R., Mann, G. W., Davies, S., and

Carslaw, K. S.: Denitrification observed by the MIPAS on ENVISAT during the Vintersol cam-

paign of 2002/3, in preparation, 2005.
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detail in Carslaw et al. (2002), Mann et al. (2003) and Davies et al. (2005). Changes

in gas phase HNO3 due to growth of NAT particles are calculated by DLAPSE and

are applied to the HNO3 field on the SLIMCAT grid, which is then advected in an Eu-

lerian manner along with the other gas phase species. Both DLAPSE and SLIMCAT

are forced using operational analyses from the European Centre for Medium-Range5

Weather Forecasts (ECMWF). NAT particles are nucleated at a fixed rate wherever

the temperature is below the NAT equilibrium temperature (TNAT) which is calculated

from model H2O and HNO3 using Hanson and Mauersberger (1988). The uptake of

HNO3 at low temperature into sulphate ternary aerosol (STS) is also included in the

model (Carslaw et al., 1995). Temporary uptake of HNO3 by STS reduces the amount10

of gas-phase HNO3 available for NAT particle growth.

For this study, the SLIMCAT resolution was 2.8
◦

longitude × 2.8
◦

latitude × 36 isen-

tropic levels. In the lower stratosphere, the model isentropic levels were spaced at 10 K

potential temperature intervals, corresponding to a vertical resolution of around 400 m.

The SLIMCAT stratospheric chemistry scheme contains 41 species and ∼120 chemi-15

cal reactions, including heterogeneous reactions on STS, using data from Sander et al.

(2000). Model tracers were initialised using values from a SLIMCAT multi-annual run

(Chipperfield, 1999) on 7 November 2002, well before the onset of temperatures low

enough to allow the formation of PSCs. To more accurately match the initial observed

nitric acid field, the initial model HNO3 field was replaced by that observed by the20

MIPAS-E instrument on that day. For this purpose, the MIPAS-E observations were

averaged onto a 20
◦

by 5
◦

longitude-latitude grid and then interpolated onto the model

grid. An advantage of this approach is that the initialisation with MIPAS-E HNO3 implies

that later comparisons are not sensitive to systematic errors in these observations. In

effect, it is the relative change in MIPAS-E observations that are tested against the25

model denitrification.

11003



ACPD

5, 10997–11028, 2005

Comparing model

and MIPAS Arctic

denitrification in

2002/03

S. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

2.3. Model simulations

Three main simulations were undertaken: (M1) using DLAPSE with a low nucleation

rate of 8.0×10
−10

particles cm
−3

s
−1

; (M2) DLAPSE with a high nucleation rate of

3.2×10
−9

particles cm
−3

s
−1

; and (M0) a ‘passive’ run in which no NAT particles

formed. The lower nucleation rate corresponds to that used in Mann et al. (2003),5

which was found by Davies (2003) to best fit nitric acid measurements aboard the ER-2

in winter 1999/2000. The higher nucleation run was found to better match denitrification

profiles observed in the 1994/5 Arctic winter (Davies et al., 2005). Two further model

runs (E1 and E2) were undertaken using an equilibrium denitrification scheme based

on the sedimentation of large NAT particles within the SLIMCAT CTM. Here, the equi-10

librium amount of condensed HNO3 determined by Hanson and Mauersberger (1988)

is sedimented with an assigned fall velocity. The fall velocities used for E1 and E2 were

adjusted to produce denitrification values at 505 K in late-December which were ap-

proximately consistent with that provided by model runs M1 and M2 respectively. Note

that the absolute denitrification is not what is being tested in this comparison, but only15

the spatial and temporal evolution. Table 1 summarises the model runs.

2.4. Determining and comparing observed MIPAS-E and modelled DLAPSE denitrifi-

cation

Having performed calculations of denitrification, when the model is compared to the

MIPAS-E data, account must be taken of the fact that the MIPAS-E data available20

for this study were HNO3 data, rather than NOy, and that the retrieval is actually an

average over a finite vertical distance. Throughout the period of this study (December

2002–January 2003), in-vortex NOy would be expected to be composed almost entirely

of HNO3 as heterogeneous processing on PSCs would be expected to remove most of

the ClONO2 and N2O5 due to the widespread low temperatures found within the vortex.25

In-vortex HNO3 photochemistry would also be expected to be slow. In the model, HNO3

comprises more than 90% of the available NOy throughout the December–January pe-
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riod with the remainder found to be predominantly ClONO2 (∼1 ppbv). Other NOy

constituents are present at even lower abundances in the model (NOx<0.3 ppbv and

N2O5<0.1 ppbv) throughout this period.

To determine an observed denitrification from the MIPAS-E measurements we use

the MIPAS-E N2O and the relation of Popp et al. (2001) (derived for the 1999/20005

winter) to infer the deviation of HNO3 from the expected NOy value in the absence

of any denitrification (referred to as NO
∗

y). The modelled denitrification from DLAPSE

is usually calculated as the difference between the nitric acid (or NOy) concentration

in a DLAPSE run and the corresponding passive run where the denitrification in the

model has been switched off. However, since the MIPAS-E ”denitrification” is defined as10

HNO3–NO
∗

y, a proper comparison requires a matching definition of modelled DLAPSE

“denitrification” as the difference between the NOy concentration in the passive run and

the HNO3 concentration in the DLAPSE run. Throughout the remainder of this article

we refer to denitrification observed by MIPAS-E as:

HNO3−NO∗

y, (1)15

with NO
∗

y determined from MIPAS-E N2O. The comparable denitrification in the model

is calculated as

HNO3−passive NOy. (2)

MIPAS-E does not retrieve the concentration from a single point. Instead the value

of the retrieval represents a weighted average of concentrations over the 3 km vertical20

resolution of the instrument. Since the denitrification process can produce very steep

vertical gradients, a direct comparison of the model with the observation at the retrieved

potential temperature level is not appropriate. For a consistent comparison, the model

denitrification profile must first have the observation averaging kernel applied. The

averaging kernel for the MIPAS-E instrument is described in Carli et al. (2004) and is25

defined on a 1 km altitude grid. In all comparisons between MIPAS-E and DLAPSE,

model profiles of HNO3 and passive NOy have been first linearly interpolated onto the

11005
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1 km altitude grid and then have had the MIPAS-E averaging kernel applied, leaving

profiles on a 3 km altitude grid. These profiles were then linearly interpolated onto the

isentropic levels 425 K, 465 K, 505 K and 545 K. For the comparison on these levels,

the MIPAS-E profiles were also linearly interpolated in potential temperature to give

equivalent retrievals on these same potential temperatures surfaces.5

3. Evolution of Arctic denitrification in 2002/3

3.1. Vortex meteorology

The Arctic winter of 2002/3 was colder than the climatological mean and characterised

by an unusually early onset of temperatures sufficiently low for the existence of PSCs

(Goutail et al., 2005). Spang et al. (2005) report observations of PSCs as early as10

1 December 2002. Larsen et al. (2004) report balloon-borne observations of PSCs

at Esrange (67.9
◦

N, 21.1
◦

E) and Sodankayla (67.4
◦

N, 26.6
◦

E) between 3 December

and 7 December 2002. PSCs were first observed at Ny Alesund on 7 December 2002

although the tropospheric conditions were unsuitable for stratospheric viewing earlier

in the winter.15

Larsen et al. (2004) report that “small areas with temperatures below the NAT exis-

tence temperature TNAT started to develop on the 550 K potential temperature surface

in mid-November”. Figure 1a shows a time-potential temperature section of the area

with temperatures below TNAT (the NAT area) using ECMWF analysed temperatures,

model HNO3 and H2O and the expression of Hanson and Mauersberger (1988). The20

NAT area developed in mid November and by early December, the area of the vortex

below TNAT (hereafter, the ‘cold pool’) had increased significantly to cover an area of

more than 10
7

km
2

throughout the region 525–575 K (see Fig. 1a). Figure 1b shows

the separation of the centre of the vortex and the centre of the cold pool and is a

measure of the likely efficiency of denitrification (Mann et al., 2002). A value of zero25

indicates that the vortex and cold pool centres are co-located resulting in ‘cold closed
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flow’, which is conducive to long NAT particle growth times and denitrification by large

NAT particles (Mann et al., 2003). A value of 1 indicates that the centre of the cold

pool is offset by its radius from the vortex and air flows through the cold pool before

warming. Such through-flow conditions result in relatively short intermittent particle

growth insufficient to produce large NAT particles. The cold pool had significant areas5

in closed flow for much of December, resulting in significant denitrification by NAT be-

ing predicted by DLAPSE. Figure 1c shows the model diagnosed vortex mean percent

denitrification. Denitrification occurred in DLAPSE from early December, the timing

being coincident with the time of maximum cold closed flow. According to the model,

vortex mean denitrification reached a maximum of ∼35% at 520 K by 1 January 2003,10

after which the vortex warmed significantly.

In mid-January a sudden stratospheric warming increased temperatures above the

threshold for PSC formation, displacing the vortex over central Europe. The polar

vortex split on 20 January 2003 although the two vortex parts recombined a few days

later. The recombined vortex cooled again in late January, by which time temperatures15

were infrequently low enough for the formation of PSCs. Further warmings occurred in

mid February and early March. Sporadic PSCs were observed in February and March,

usually associated with additional cooling from orographic temperature perturbations

or tropospheric uplift (Naujokat and Grunow, 2003; Spang et al., 2005). We restrict the

analysis in this study to the period prior to the first warming in mid-January.20

High resolution in situ NOy observations of the Arctic lower stratosphere by the

SIOUX instrument aboard the Geophysica aircraft in January and February 2003 re-

vealed significant renitrification between 400 and 440 K, together with evidence of mod-

erately strong denitrification at higher altitudes (Grooß et al., 2005).

3.2. Evolution of model denitrification25

Figure 2 compares the evolution of modelled and MIPAS-E observed denitrification,

with the observations shown as over-plotted coloured circles. Only points at equivalent

latitudes greater than 65
◦

N and having a CI>2.0 are shown. Figures 2a to e correspond

11007
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to model run M2 and Figs. 2f to j correspond to model run E2 for the days indicated. In

each plot, contours of the Montgomery streamfunction indicate the direction of air flow.

Figure 2a shows that on 9 December 2002 the Arctic vortex was elongated with two

centres of flow. At this time, the cold pool was located close to the edge of the vortex,

resulting in air mass trajectories with short durations below PSC temperatures. The5

orientation of the vortex and cold pool were similarly offset throughout the first week of

December (not shown). According to the microphysical model, NAT particles formed in

these cold air masses had insufficient time to grow appreciably, resulting in very weak

denitrification despite the large region below TNAT. In addition, analysed temperatures

were extremely low in early December, resulting in sequestration of model gas-phase10

HNO3 in supercooled ternary solution particles (STS) and hence further restriction of

NAT growth. At this time, the DLAPSE model run M2 predicts a peak denitrification

of 3–4 ppbv in a narrow region over northern Russia. Denitrification calculated by

equilibrium run E2 (Fig. 2f) shows broadly similar features to M2 although there is a

more pronounced ‘tongue’ of weakly denitrified air following the vortex flow across the15

pole from Arctic Russia to Canada. Particle sedimentation in the equilibrium model

occurs at a fixed rate therefore any air mass that is exposed to temperatures below

TNAT will undergo some denitrification.

From 13 December onwards, the vortex and cold pool centres become more closely

aligned, creating a significant region of closed flow in the cold pool. Model denitrifi-20

cation in the core of the vortex (which corresponds to the region of cold closed flow)

increased substantially over the following 10 days. Widespread MIPAS-E CI values

below 2.5 close to the core of the vortex (Fig. 2b–d) provide support for the notion of

widespread PSC activity at this time. By December 22, the vortex core was more than

80% denitrified in each model run. The discrepancies in the spatial distribution of den-25

itrification between model runs M2 and E2 become more apparent from December 16

onwards (cf. Fig. 2c–e and Fig. 2h–j). Model run M2 has the region of denitrification

closely constrained to the region of closed flow in the core of the vortex. In contrast,

the denitrification in model run E2 is much more widely distributed, with high levels of
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denitrification even in the through-flow part of the cold pool. Observed denitrification

(filled circles) by late December suggests that model run E2 significantly overestimates

the spatial extent of denitrification at 505 K. A more detailed comparison of the spa-

tial distribution of denitrification from MIPAS-E and these model runs is discussed in

Sect. 5.5

A notable feature is that both model denitrification schemes have two centres of low

gas phase HNO3 evident on 19 December 2002 (Fig. 2d and i). The large region of

low HNO3 close to the centre of the vortex is most likely due to denitrification as tem-

peratures are close to or just above TNAT. MIPAS-E confirms the existence of strongly

denitrified air in this region. The smaller region of low HNO3 over Iceland is most likely10

due to uptake into STS. MIPAS-E CI values below 2.5 for retrievals in this region indi-

cate the likely presence of PSCs. (Differences in the uptake of HNO3 into STS between

the model runs M2 and E2 are due to differing extents of denitrification in both models.)

As can be seen in Fig. 1a, in late December, the area of NAT supersaturation de-

creased significantly. This is partly caused by a minor stratospheric warming, but also15

the strong denitrification decreases TNAT. Consequently model calculated denitrifica-

tion was essentially complete by late December, irrespective of the scheme used (not

shown).

It is also worth noting that MIPAS-E indicates regions of enhanced HNO3 relative to

NO
∗

y at 505 K on 13 December (Figs. 2b, g) and from December 19 (Figs. 2d, i) as20

shown by red circles. It is possible that these are a signal of renitrification caused by

the evaporation of NAT which has co-condensed onto ice particles which formed on

the synoptic scale as temperatures were extremely low at 550 K in early December

(Goutail et al., 2005).

3.3. Comparison with MarkIV balloon25

The NASA Jet Propulsion Laboratory MarkIV balloon-borne interferometer flew from

Esrange, near Kiruna (67.9
◦

N, 21.1
◦

E) on 16 December 2002. Figure 2c and h show

the model denitrification at 505 K on that day from model runs M2 and E2, respectively.
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According to the ECMWF analyses Northern Scandinavia was deep within the polar

vortex and temperatures were ∼2 K below TNAT. Model runs M2 and E2 both indicate

significant (∼6 ppbv) denitrification above Kiruna at 505 K on this day although the

region of strongest modelled denitrification (∼10 ppbv) was situated about 500 km

northeast of Kiruna.5

Figure 3 shows the denitrification profile as observed by the MarkIV interferometer

and for the four model runs interpolated to the Esrange location. Since the MarkIV

instrument measures most NOy species, here we compare the observed denitrification

(NOy–NO
∗

y) with the model denitrification (NOy–passive NOy) for each of the runs – M1,

M2, E1, E2. Figure 3 shows that significant denitrification was observed by the MarkIV10

(black line) between ∼520 and ∼600 K. The observed denitrification does not tend to

zero above 650 K because the NO
∗

y(N2O) relation from Popp et al. (2001) begins to

break down for the low N2O concentrations at these altitudes. The two different model

denitrification schemes predict two different shaped denitrification profiles. In the equi-

librium model runs, peak denitrification occurs at a considerably higher altitude than15

in either of the two runs with the DLAPSE microphysical scheme. The peak denitrifi-

cation in the equilibrium model scheme corresponds to the level where temperatures

are furthest below TNAT whereas the microphysical scheme accounts for the variation

in particles size with altitude leading to greater denitrification (larger particles) at lower

levels.20

The shape of the observed denitrification profile is not reproduced at all altitudes by

either of the model denitrification schemes. At high altitudes, denitrification is too strong

in the equilibrium model runs, whereas the microphysical model runs tend to produce

more denitrification than is observed at lower altitudes. Considering the microphysical

model runs, at lower levels, the magnitude of observed denitrification from MarkIV is25

more consistent with that produced by the M1 run at the lower levels (around 500 K). At

higher altitudes however, the observed denitrification bridges that produced by model

runs M1 and M2. A comparison of the magnitude of the observed denitrification with

that produced by the equilibrium model runs shows that model E1 best matches the ob-

11010



ACPD

5, 10997–11028, 2005

Comparing model

and MIPAS Arctic

denitrification in

2002/03

S. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

served denitrification from MarkIV although both E1 and E2 significantly overestimate

denitrification between 550 and 650 K. Although the observed renitrification is best re-

produced in run E2, this model run is incompatible with the observed denitrification.

The Chemical Lagrangian Model of the Stratosphere (CLaMS) uses a denitrification

scheme based on DLAPSE. CLaMS was also unable to reproduce the renitrification5

observed by the MarkIV balloon (Grooß et al., 2005). Minimum ECMWF-analysed

temperatures were extremely low (∼181 K at 550 K) in early December therefore it is

possible that ice PSCs may have been present (Goutail et al., 2005) and contributed to

the denitrification observed by MarkIV.

4. Timing of denitrification10

Observations of Arctic NOy species from a variety of platforms in a number of ear-

lier winters have not been able to unambiguously determine the timing of the onset of

stratospheric denitrification in the Arctic. The wide spatial coverage of MIPAS-E HNO3

and N2O provide an opportunity to determine both the onset and duration of denitrifi-

cation in the Arctic during the winter of 2002/3.15

Figure 4 shows the evolution of denitrification inside the polar vortex as predicted

by the four model runs on 4 isentropic levels (425 K, 465 K, 505 K and 545 K) and

as measured by MIPAS-E. Section 2.4 describes the procedure used to enable the

model and observations to be comparable on these levels. Each daily point in the

graph approximates a ”vortex average denitrification”, which is the mean of observed20

or modelled denitrification interpolated to each of the valid retrieval points. Retrieval

locations were assumed to be valid only if they satisfied all of the following criteria

throughout the profile: MIPAS-E cloud index >2.0 (no interference from clouds; Spang

et al., 2005); ECMWF equivalent latitude >65
◦

(inside the vortex); and T>TNAT-2 K as

determined from the ECMWF analyses, model H2O and HNO3 according to Hanson25

and Mauersberger (1988). The value of denitrification represented in Fig. 4 is not a true

vortex average as MIPAS-E does not sample all equivalent latitudes equally, especially
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when the criteria detailed above are used. The noise in the signal of the denitrification

is caused by this non-uniform sampling of the vortex.

Figure 2 shows that the first clear signal of denitrification at 505 K in MIPAS-E oc-

curred on 19 December 2002 near the pole. Five of the observations on 19 December

(shown as filled circles marked with an X) may be weakly influenced by the presence5

of PSCs (2.0<CI<2.5), whilst three observations are clearly above TNAT-2 K. Conse-

quently, only the latter points are within the criteria that we use to calculate the vortex

average. The MIPAS-E 505 K denitrification (black line in Fig. 4c) for this day (plotted

at Julian day 353.5) has negligible denitrification within the noise of the signal. There

are indications that weak denitrification was observed by MIPAS-E on 16 December al-10

though these points are on the limit of the TNAT-2 K criterion we use to exclude possible

uptake into PSCs. No MIPAS-E HNO3 data are currently available for 17–18 December.

The first point in Fig. 4c where the denitrification can be unambiguously determined

to have begun is when denitrified air is advected out of the cold pool on 19 December

(day 353.5) at 505 K and 545 K. At 465 K, the denitrification signal is much weaker and15

occurs later (day 370 onwards). Weak denitrification is preceeded by a slow increase in

MIPAS-E HNO3–NO
∗

y which could be due to renitrification or heterogeneous conversion

of NOy reservoirs to HNO3. A similar slow increase in HNO3–NO
∗

y is also observed at

425 K but no denitrification is evident. The relatively large offset between MIPAS-E

HNO3 and NO
∗

y at 545 K makes detailed comparisons at this altitude more difficult.20

The microphysical model runs M1 and M2 (green and blue, respectively) capture

the timing of denitrification well at all altitudes. This is especially true at 505 K, where

the initial offset between HNO3 and NO
∗

y is smaller. It is not clear which of the two

NAT particle nucleation rates used in the model best match MIPAS-E observations. In

contrast, the equilibrium model runs (E1 and E2) both have a relatively short period25

of weak renitrification followed by denitrification that does not agree with the MIPAS-E

observations. The tendency for model runs E1 and E2 to denitrify too early is more

pronounced at 545 K. Denitrification begins around 10 days sooner in model runs E1

and E2 than is observed by MIPAS-E at this level. However, the ‘vortex average’ ap-
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proach used here may mask some of the initial denitrification by cancellation of positive

and negative signals. In addition, the exclusion of MIPAS-E profiles where PSCs may

exist also limits the degree of certainty with which we can unambiguously determine

the timing of denitrification from these observations.

In summary, the temporal evolution of model and MIPAS-E ’vortex average’ denitri-5

fication during the Arctic winter of 2002/03 suggests that the microphysical scheme

is better able to reproduce the MIPAS-E observations. The best agreement be-

tween model and observation is obtained when the NAT nucleation rate is set to

3.2×10
−9

cm
−3

s
−1

as in the M2 run. The temporal change in denitrification in the

equilibrium model runs E1 and E2 (with particle fall speeds chosen to approximately10

match the denitrification produced by M1 and M2 at 505 K) does not match that of the

MIPAS-E observations. The equilibrium scheme shows very different features than the

MIPAS-E observations at higher altitudes.

5. Spatial distribution of denitrification

In this section the evolution of the spatial distribution of denitrification using the mi-15

crophysical and equilibrium schemes is compared with observations from MIPAS-E.

Figure 5 compares the modelled spatial distribution of denitrification in runs M2 and E2

with MIPAS-E at 505 K from mid-December to mid-January. The modelled distribution

in run M2 agrees well with the observations (Fig. 5a). Both MIPAS-E observations and

model run M2 demonstrate a bimodal distribution of denitrification at equivalent lati-20

tudes between 65 and 70
◦

with a high probability of little or no denitrification, together

with a lower probability of strong denitrification (∼8–9 ppbv) in a narrow band. In con-

trast, model run E2 has an almost equal probability of denitrification from ∼0 to 12 ppbv

in the 65 and 70
◦

N equivalent latitude range. Both M2 and E2 produce a distribution

of denitrification at equivalent latitudes above 75
◦

N which is realistic when compared25

with MIPAS-E. The low probabilities at equivalent latitudes poleward of 80
◦

N may be

attributed to the low number of valid MIPAS-E points in that region during the period of
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study as many potentially denitrified profiles are excluded due to the presence of PSCs

which affect the retrieval or temperatures below TNAT-2 K where significant HNO3 up-

take cannot be excluded.

Figure 6 shows the distribution of modelled denitrification at 505 K from model runs

M2 and E2 for five 5-day periods during December as a function of equivalent latitude.5

Model denitrification at each in-vortex grid point was placed into 1 ppbv × 2
◦

equivalent

latitude bins. Triangles mark the mean and 1-σ standard deviation of the contoured

model denitrification distribution. All in-vortex MIPAS-E points which satisfied the se-

lection criteria described above were placed into 1 ppbv × 5
◦

equivalent latitude bins

and plotted as squares. The diamonds represent the model interpolated to MIPAS-E10

observations and sampled similarly to MIPAS-E.

In the equilibrium run E2, denitrification occurs almost uniformly poleward of ∼67
◦

N

(Fig. 6h–j) whereas the microphysical run M2 shows a higher incidence of denitrifica-

tion at the higher equivalent latitudes (Fig. 6c–d). This feature of kinetically controlled

denitrification is less apparent towards the end of December (Fig. 6e) when transport15

of denitrified air plays an increasing role in the spatial distribution of denitrification. Sig-

nificant differences in the spatial distribution of denitrification between the two model

runs remain, however. These differences are especially apparent towards the end

of December (Fig. 6e and j). Both model runs have a relatively high occurrence of

strong denitrification close to the centre of the vortex. However, the distribution of den-20

itrification at lower equivalent latitudes within the vortex (between ∼70
◦

–80
◦

N) show

significant differences.

In summary, the spatial distribution in the DLAPSE microphysical scheme agrees

much better with observations than a model which simply assumes thermodynamic

equilibrium between NAT and gas-phase HNO3. Out of the three comparisons per-25

formed here (timing, vertical distribution and horizontal distribution) it is the horizontal

distribution of denitrification that provides the most compelling evidence that a micro-

physical scheme is more realistic than an equilibrium scheme.
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6. Conclusions

The Arctic winter of 2002/03 was unusually cold with temperatures below the PSC for-

mation threshold from mid-November until mid-January. Denitrification of the Arctic

lower stratosphere was observed by the JPL MarkIV interferometer over Scandinavia

in mid-December 2002. HNO3 and N2O observations from the MIPAS-E instrument5

aboard ENVISAT were available throughout the polar vortex during this winter. MIPAS-

E has provided an opportunity to examine the timing and spatial distribution of den-

itrification in this winter. We have used data from MIPAS-E to explore the temporal

and spatial distribution of denitrification in the DLAPSE/SLIMCAT model. Comparisons

were also made with a simple NAT-based equilibrium denitrification scheme.10

Denitrification was first observed by MIPAS-E in mid-December between 505 and

545 K. At these altitudes, the denitrification scheme in DLAPSE closely matched the

timing of observed denitrification at these altitudes. In contrast, the simpler equilibrium

denitrification scheme used in many CTMs tended to denitrify around 10 days too early

when compared with MIPAS-E. This discrepancy was especially pronounced at 545 K.15

At lower altitudes (465 and 425 K) where denitrification was weaker, the differences

between model runs were less pronounced. In all cases, the best fit to observations

was achieved using the microphysical denitrification scheme with a nucleation rate of

3.2×10
−9

particles cm
−3

s
−1

. The need for an increased NAT particle nucleation rate

to match observations of denitrification during the Arctic winter of 2002/03 is consistent20

with the results obtained by Grooß et al. (2005). They compared the denitrification

produced from their DLAPSE-like scheme in the CLaMS model to MarkIV observations

and later in situ observations from the Geophysica high altitude research aircraft.

Considerable differences in the spatial distribution of distribution are apparent be-

tween microphysical and equilibrium denitrification schemes. Equilibrium denitrification25

schemes have been shown to denitrify over a wider horizontal area of the vortex than

equivalent microphysical schemes in idealised simulations (Mann et al., 2002) when

the relative orientation of the vortex flow and cold pool are offset. A baroclinic vortex is
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less favourable for denitrification by large NAT particles as the process requires particle

trajectories to remain below TNAT for several days. The rate of denitrification increases

non-linearly with time in microphysical growth models such as DLAPSE. Equilibrium

schemes, however, generally denitrify at a fixed rate which is independent of the his-

tory of the air parcel. There were significant periods of time during the Arctic winter of5

2002/3 when the vortex and cold pool were offset, resulting in significant differences

in the meridional distribution of denitrification between microphysical and equilibrium

model runs. We have used the wide spatial coverage of MIPAS-E HNO3 and N2O to

examine the horizontal distribution of model denitrification. These observations sug-

gest that the equilibrium denitrification scheme used in this study overestimates the10

observed denitrification in the outer regions of the vortex (between 65
◦

and 70
◦

N equiv-

alent latitude) when the observed denitrification in the core of the vortex is reproduced.

MIPAS-E observations indicate that the outer regions of the Arctic vortex were not

significantly denitrified during the denitrifying phase throughout December and early

January. The DLAPSE denitrification scheme reproduces the observed horizontal dis-15

tribution of denitrification during this winter.

Equilibrium schemes tend to produce stronger denitrification than microphysical

schemes at the highest altitudes (∼550 K in 2002/3) where mid-winter temperatures

tend to be furthest below TNAT. Denitrification at the highest altitudes in microphysi-

cal models is suppressed by the small size and slow uptake of HNO3. Comparisons20

with the MarkIV balloon and MIPAS-E imply that the equilibrium denitrification schemes

used in this study may produce too much denitrification above 500 K although quantifi-

cation of this difference is beyond the scope of this study.

The present comparison with new satellite observations during winter 2002/3, com-

bined with the extensive comparison with in situ and remote observations from other25

winters (Davies et al., 2005), now provides strong support for the mechanism of den-

itrification in our 3-D model. Four clear statements about denitrification may now be

made: 1) The onset and rate of Arctic denitrification can be explained by the forma-

tion, growth and sedimentation of NAT particles. 2) Synoptic-scale ice formation as
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a precursor to NAT formation cannot account for the observed development of Arctic

denitrification, which occurs long before temperatures have fallen to the ice frost point

(although this is not the case in 2002/3 . 3) The formation of NAT at a fixed nucleation

rate uniformly throughout the NAT supersaturated region of the vortex produces 3-D

fields of denitrification that agree well with extensive observations; none of the deni-5

trification observations that we have analysed supports the need for a more complex

NAT formation mechanism, although a single rate fails to reproduce the magnitude of

denitrification equally well in all winters. 4) The co-location of the regions of low temper-

ature and circulation is important in controlling the spatial distribution of denitrification,

as originally suggested by Carslaw et al. (2002) and Mann et al. (2002, 2003).10
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Table 1. Model sensitivity experiments. * indicates calculated by microphysical model.

Simulation M0 M1 M2 E1 E2

Nucleation rate (10
−9

cm
−3

s
−1

) 0.0 0.8 3.2 – –

Fall velocity (ms
−1

) * * * 0.005 0.001

Equivalent radius (µm) * * * 3.0 1.2

11022



ACPD

5, 10997–11028, 2005

Comparing model

and MIPAS Arctic

denitrification in

2002/03

S. Davies et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

650

550

450

350

650

550

450

350

650

550

450

350

-40                       -20                           0                         20                         40                         60 

Day after January 1, 2003

P
o

te
n

ti
a

l T
e

m
p

e
ra

tu
re

  (
K

)

14

12

10

  8

  6

  4

  2

  0

  40

  20

    0

-20

-40

1.4

1.2

1.0

0.8

0.6

0.4

0.2

   0

106 km2

a) NAT area

b) Normalised centroid separation

c) % Denitrification

Fig. 1. (a) Model calculated NAT area (10
6

km
2
) based on ECMWF analyses and HNO3 and

H2O from model run M1; (b) Calculated normalised centroid separation (i.e. separation of the

centroids of the polar vortex and NAT area, divided by NAT area); (c) Vortex mean denitrification

as a percentage of total NOy from run M1.
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Fig. 2. Contour plot of model

gas-phase HNO3–passive NOy

for M2 (a–e: left) and E2 (f–

j: right) at 505 K on 5 days in

2002: 9, 13, 16, 19, 22 Decem-

ber. The magnitude of MIPAS-

E HNO3–NO
∗

y is shown as filled

circles. An X in a MIPAS-

E observation indicates profiles

where 2.0<CI<2.5 which may

indicate the presence of PSCs

Spang et al. (2005). Also

shown are the 65
◦

N Equiva-

lent Latitude contour (thick black

line), TNAT and TNAT-2 K (red

lines), Montgomery streamfunc-

tion (thin black lines) and the re-

gion with >1 ppbv HNO3 uptake

to liquid aerosol (white contour).
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Fig. 3. Denitrification observed by the MarkIV balloon flight from Kiruna on 16 December 2002

(black). The model diagnosed denitrification interpolated to the location of the MarkIV from runs

M1(green), M2 (blue), E1 (orange) and E2 (red) are also shown. Denitrification from MarkIV

is diagnosed as gas-phase NOy–NO
∗

y and model denitrification is diagnosed from gas-phase

NOy–passive NOy for all runs.
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Fig. 4. Temporal evolution of ‘average’ MIPAS-E-observed (black line) and model denitrification

poleward of 65
◦

Equivalent Latitude at 4 isentropic levels during 2002/03. Model diagnosed

denitrification from runs, M1 (green) M2 (blue), E1 (orange) and E2 (red) are also shown.

Model output is interpolated to the location of the MIPAS-E tangent points and similarly av-

eraged. Denitrification is diagnosed as gas-phase HNO3–NO
∗

y for MIPAS-E and gas-phase

HNO3–passive NOy for model runs.
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Fig. 5. Probability distribution of denitrification as a function of Equivalent Latitude at 505 K for

(a) MIPAS-E observations, (b) model run E2 and, (c) model run M2 for the period 15 December

2002 to 12 January 2003. Model denitrification is interpolated to each MIPAS-E observation

point. The bin size is 2
◦

×1 ppbv.
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Fig. 6. Probability distribution of denitrification as a function of Equivalent Latitude at 505 K for

seven 5 day periods from model run M2 (a–e: left) and model run E2 (f–j: right). From the top,

the intervals are 2–6 December, 7–11 December, 12–16 December, 17–21 December and 27–

31 December. Triangles show the modelled vortex mean denitrification at the indicated EqL.

Squares indicate the MIPAS-E mean denitrification and diamonds indicate the vortex mean of

model denitrification when interpolated to MIPAS-E.
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