001     47973
005     20240708132737.0
024 7 _ |2 DOI
|a 10.1016/j.jeurceramsoc.2005.06.035
024 7 _ |2 WOS
|a WOS:000234910700015
037 _ _ |a PreJuSER-47973
041 _ _ |a eng
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |a Meulenberg, W. A.
|b 0
|u FZJ
|0 P:(DE-Juel1)129637
245 _ _ |a Graded porous TiO2 membranes for microfiltration
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of the European Ceramic Society
|x 0955-2219
|0 3891
|y 4
|v 26
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Membrane technology can be integrated into many advanced system concepts for the production of liquid energy carriers and chemicals, for microfiltration, oxygen generation, low-CO2-emission power generation, hydrogen technology and carbon dioxide capture. Forschungszentrum Julich has developed a composite membrane consisting of a ceramic TiO2 membrane with pores in the range of 100 nm deposited on a thin planar metallic substrate made of 316L stainless steel powder. Fabrication of substrate and membrane is described in this paper and the composite structure is characterized. The stainless steel substrate is produced by tape casting, the TiO2 membrane by wet powder spraying or screen printing. Light microscopy, scanning electron microscopy, EDX and XRD are used to characterize the starting materials and layers. The measurement of air flow rates as a function of the pressure drop is given. (c) 2005 Elsevier Ltd. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a composites
653 2 0 |2 Author
|a porosity
653 2 0 |2 Author
|a sintering
653 2 0 |2 Author
|a TiO2
653 2 0 |2 Author
|a membranes
700 1 _ |a Mertens, J.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB3910
700 1 _ |a Bram, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)129591
700 1 _ |a Buchkremer, H. P.
|b 3
|u FZJ
|0 P:(DE-Juel1)129594
700 1 _ |a Stöver, D.
|b 4
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1016/j.jeurceramsoc.2005.06.035
|g Vol. 26
|q 26
|0 PERI:(DE-600)2013983-4
|t Journal of the European Ceramic Society
|v 26
|y 2006
|x 0955-2219
856 7 _ |u http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.035
909 C O |o oai:juser.fz-juelich.de:47973
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g IWV
|k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|0 I:(DE-Juel1)VDB5
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)75586
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21