
John von Neumann Institute for Computing

On Scheduling in UNICORE - Extending the
Web Services Agreement based Resource

Management Framework

A. Streit, O. Wäldrich, P. Wieder, W. Ziegler

published in

Parallel Computing:
Current & Future Issues of High-End Computing,
Proceedings of the International Conference ParCo 2005,
G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 57-64, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

1

On Scheduling in UNICORE – Extending the Web Services Agreement based
Resource Management Framework∗

A. Streita, Oliver Wäldrichb, Ph. Wiedera, W. Zieglerb

aCentral Institute for Applied Mathematics, Research Centre Jülich, 52425 Jülich, Germany

bFraunhofer Institute SCAI, Department of Bioinformatics, 53754 Sankt Augustin, Germany

1. Introduction

Designing, building and using Grids generally implies that the resources involved are highly dis-
tributed, heterogeneous and managed by different organisations. These characteristics hamper the
coordinated usage and management of resources within a Grid, which in turn motivates the devel-
opment of Grid-specific resource management and scheduling solutions. Please refer for instance to
[8] which collects a large variety of contributions to research and development for this specific topic.

The use case of the work we present here requires a Grid that has exactly the properties listed
above: The VIOLA Grid [15] comprises distributed resources of different types which are owned
by different organisations and have to be managed in a coordinated fashion. Although the resources
have different owners the aspects of authentication and authorisation are of secondary importance
to this work since the underlying middleware, UNICORE, provides all necessary security means
required to realise a Virtual Organisation [3].

The focal point of this paper is the orchestration of resources. In our case various compute and
network resources have to be co-allocated to form a virtual machine that enables the execution of
distributed parallel applications. To achieve this goal, a meta-scheduler is needed which generates
a schedule based on user requirements and guarantees that the requested resources are reserved
in advance. Therefore we developed the VIOLA MetaScheduling Service, which is founded on
the experience with the UNICORE WS-Agreement prototype [11], the MeSch meta-scheduler [10]
and the UNICORE timer process [2, chapter 3.7.2 “Distributed Applications”]. The integration
of UNICORE and the MetaScheduling Service provides a framework which fulfils the use case’s
requirements and lays the foundation for co-allocation of arbitrary resources.

Following the introduction (this section) we describe in Section 2 the resource management mech-
anisms of the UNICORE software and the resulting challenges with respect to the VIOLA use case.
Based on this description we introduce in Section 3 the VIOLA MetaScheduling Service including
its architecture and the internal processes. We conclude the paper with an outline of future work
related to scheduling in UNICORE (see Section 4) and a short summary (see Section 5).

2. UNICORE Resource Management

The resource management in UNICORE is centred around two concepts: resource virtualisation
and job abstraction [2]. These concepts are connected through the UNICORE Resource Model,
which provides a unified mechanism to describe both resource requests and resource properties.

The virtualisation of resources manifests itself in UNICORE’s Virtual Site (Vsite) that comprises

∗This work is partially funded by the German ministry for eduction and research (BMBF) within the VIOLA project
under grant 01AK605L. This research work is also partially carried out under the FP6 Network of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265).

57

2

Abstract Job

@ Vsite 1

Concrete Job

I

D

B

Vsite 1

I

D

B

Vsite 2
Usite

abstract incarnated

Figure 1. Two stages of a UNICORE job

a set of resources. These resources must have direct access to each other, a uniform user mapping,
and they are generally under the same administrative control. A set of Vsites is represented by a
UNICORE Site (Usite) that offers a single access point (a unique address and port) to the resources
of usually one institution.

A UNICORE job passes two different stages during its lifetime (see Fig. 1), an abstract and an
incarnated one. During the former the job description contains no site-specific information such as
paths to executables or paths to data, and it is processable by every Usite, whereas during the latter
the job representation includes all information necessary to actually execute the job on resource
level. Between these two stages the abstract job representation is “translated”; a process that is
called incarnation and is carried out at Vsite level. For incarnation as well as for the composition of
jobs resource-specific information is needed. The information service that keeps and propagates this
information is the Incarnation Database (IDB), a service deployed per Vsite. It maintains resource
information according to the UNICORE Resource Model and provides inter alia information about
capability resources, such as software distributions, and about capacity resources, such as processors
or memory.

Most Grid scheduling actions within a UNICORE environment are currently carried out manually.
Based on the classification in [12], ten actions in three phases are distinguished during the process
of scheduling. Resource discovery and system selection are performed by the user. Entering the
third phase called job execution (on Usite level) the abstract job representation has then its target
Vsite assigned, as shown in Fig. 1. This implies that candidate resources have been pre-selected and
mapped to the user’s or application’s resource requirements. In the current implementation these
tasks are executed by the user via the UNICORE graphical client although the UNICORE concepts
and models do not impose this modus operandi.

To satisfy the VIOLA meta-scheduling use case UNICORE needs to be at least extended to pro-
vide advance reservation capabilities. This can be realised by integrating WS-Agreement providers
and consumers into UNICORE, as reported in [11], and has been implemented in the first phase of
the MetaScheduling Service development as outlined in the following section.

3. Scheduling Arbitrary Resources

Scheduling resources with the objective of meeting a user’s demand for a distinct Quality of
Service (QoS), e.g. precisely timed availability of multiple resources, requires local scheduling
systems with two indispensable capabilities in order to allocate resources efficiently:

58

3

• To publish the time-slots at which the resource is available.

• To make a reservation for a given start time and stop time.

At this stage there are just a few local scheduling systems with these capabilities, such as PBS
Professional [9], CCS [7], EASY [13], or LSF. But we expect new systems appear (like for example
the next version of LoadLeveler) as these capabilities are crucial for resource owners who intend to
advertise their resources with guarantees for QoS to the Grid. Other approaches have been proposed
to support co-allocation of resources based on simple queueing by the local scheduling systems.
Following either a trial and error approach or extending the reservation times hoping to create a
matching time-window for the job, these approaches deliver only best-effort results. The first ap-
proach keeps the local scheduling busy with requests and cancellation of requests, while the second
one often results in wasting resources that are waiting for other resources to become available if the
local queues are populated.

3.1. Interaction with Local Scheduling Systems
Local scheduling systems typically have different APIs with different behaviour. The handling of

these differences is not part of the MetaScheduling Service, instead an Adapter Pattern [4] approach
is used. This results in a specific light-weight adapter for each local scheduling system which is
designed to facilitate the integration of new local scheduling systems. The adapters implement the
(command line) interface to the local scheduling system on one end and the SOAP [14] interface to
the MetaScheduling Service on the other end. The MetaScheduling Service itself is agnostic to the
details of local scheduling systems and implements the SOAP interface which includes all functions
necessary to carry out meta-scheduling:

• ResourceAvailableAt - returns the next possible start time for a job on a resource that
matches the properties of a user’s request.

• Submit - submits a job to a free slot identified before.

• Cancel - removes a component of a meta-job from a local scheduler.

• State - returns the state of a local reservation.

• Bind - submits IP addresses of allocated resources (at runtime).

• Publish - submits runtime information to the local system.

Only the first four functions are needed to generate a meta-schedule, the remaining two provide
additional management functions. In case of network resources the Bind call allows to communi-
cate the IP addresses of all the compute nodes which are allocated for a job once the job has been
started. Thus the resource management system for the network resources is enabled to set up the
necessary end-to-end network configuration with the required QoS. The Publish call finally is
used to submit runtime information to the local systems, like information necessary to configure the
MPI environment or wrappers for batch scripts to start-up a job.

The pseudo code in Listing 1 describes the algorithm to identify common free slots using the
ResourceAvailableAt call. To speed up the process the ResourceAvailableAt calls are
executed in parallel, hence the request for the next possible start time is performed in parallel for all
adapters.

59

4

Listing 1: Pseudo code of the time-slot algorithm
s e t n = number of r e q u e s t e d r e s o u r c e s
s e t r e s o u r c e s [1 . . n] = r e q u e s t e d r e s o u r c e s
s e t p r o p e r t i e s [1 . . n] = r e q u e s t e d p r o p e r t y p e r r e s o u r c e # number of nodes , bandwidth , t ime , . . .
s e t f r e e S l o t s [1 . . n] = n u l l # s t a r t t ime of f r e e s l o t s
s e t endOfPreviewWindow = f a l s e
s e t n e x t S t a r t u p T i m e = c u r r e n t T i m e+someMinutes # t h e s t a r t i n g p o i n t when l o o k i n g f o r f r e e s l o t s

whi l e (endOfPreviewWindow = f a l s e) do {

f o r 1 . . n do i n p a r a l l e l {
f r e e S l o t s [i] = R e s o u r c e A v a i l a b l e A t (r e s o u r c e s [i] , p r o p e r t i e s [i] , n e x t S t a r t u p T i m e)

}

f o r 1 . . n do {
s e t needNext = f a l s e
i f (n e x t S t a r t u p T i m e ! = f r e e S l o t s [i]) t h e n {

i f (f r e e S l o t s [i] ! = n u l l) t h e n {
i f (n e x t S t a r t u p T i m e < f r e e S l o t [i]) t h e n {

s e t n e x t S t a r t u p T i m e = f r e e S l o t s [i]
s e t needNext = t r u e

}
} e l s e {

s e t endOfPreviewWindow = t r u e
}
}
}
}

i f ((needNext = f a l s e) & (endOfPreviewWindow = f a l s e)) t h e n r e t u r n
f r e e S l o t s [1] e l s e r e t u r n ” no common s l o t found ”

3.2. Capabilities of a MetaScheduling Service
There are several tasks a meta-scheduler should be able to perform in a resource management

framework. It should for example be able to:

1. Allocate a single resource for a single application for a fixed period of time.

2. Co-allocate several resources for the same fixed period of time for single or multiple applica-
tions.

3. Allocate multiple resources for multiple applications for different fixed periods of time.

4. Allocate dedicated resources for either of the cases above.

The current version of the MetaScheduling Service is able to perform task 1. and 2. which allow
to schedule a simple job to one resource in the Grid or to schedule a job composed of several com-
ponents that need to be executed at the same time to multiple resources in the Grid. The third task,
being essential to schedule workflows in the Grid without wasting resources, will be implemented
in the next version of the service, just as the fourth task which is required to allocate resources with
special capabilities, i.e. I/O nodes for parallel I/O.

3.3. Negotiation Process
In this section we describe the protocol the MetaScheduling Service uses to negotiate the alloca-

tion of resources with the local scheduling systems. The protocol is illustrated in Fig. 2. As Section
3.1 describes, the resource negotiation starts with the MetaScheduling Service acquiring a preview
of the resources available in the near future from the individual scheduling subsystems. The consol-
idation of the previews from all systems results in a list of resources and the next possible start times
for the job scheduled to these resources.

The algorithm terminates either if at least one resource no longer advertises a next possible start
time within the look-ahead time-frame of the local scheduling system, or when a common time-slot is
identified. As long as all resources return the next possible start times, the MetaScheduling Service
calculates whether there is sufficient overlap between the returned slots to allocate all requested

60

5

Local Scheduling System

MetaScheduling Service

Resources

create

resource

list

calculate

timeslot

schedule

resources

check

reservation

reservation

succeeded

Schedule

submit

schedule

resource

Terminate

cancel reservation

free resources

Resource preview

create preview

lookup local

schedule

Resource properties

local resource

properties

(effective start time)

lookup local

schedule

get

reservation

properties reservation

failed

Figure 2. The negotiation process

resources. If not, the slot with the latest possible starting time is selected as starting point of the next
preview query. If there is sufficient overlap, the next steps of the protocol are performed:

• The MetaScheduling Service submits the specific reservation requests with the calculated start
time to the local scheduling systems.

• The adapters return a confirmation from the local scheduling systems, indicating the start time
of the reservation and the properties (number of nodes, bandwidth, etc.).

• The MetaScheduling Service then checks whether the confirmations received match the re-
quests.

Verifying the schedules is necessary because in the meantime new reservations may have been
submitted to the local schedulers by other (local) users or processes, which may prevent the schedul-
ing of the reservation at the requested time. If the MetaScheduling Service detects one or more
reservations that are not scheduled at the requested time, all reservations will be cancelled. The
latest effective start time of all reservations in the current scheduling cycle will be used as the ear-
liest starting time in the next negotiation cycle. If this finishes successfully and all reservations are
scheduled at the appropriate time on the local systems the co-allocation of the resources will be
completed.

3.4. Integration into the UNICORE Environment
As shown in Fig. 3 the UNICORE system and the MetaScheduling Service are currently loosely

coupled through the UNICORE client. A special plug-in for the UNICORE client allows the user

61

6

to specify his request for co-allocated resources to run a distributed job in the VIOLA testbed. The
same plug-in also manages communication with the MetaScheduling Service. Once Unicore/GS,
the service-oriented version of UNICORE, will be available, the integration will be rather at the
level of the UNICORE Server. But even with the current level of integration it is possible to use
UNICORE mechanisms to map the certificate a user presents to the client for authentication to
the (probably) different uids of this user at the different sites of the testbed. This information is
passed to the MetaScheduling Service along with a list of the requested resources and enables the
service to do the reservations at the different sites with the correct local uid. The SOAP interface for
communication between UNICORE client and MetaScheduling Service is using WS-Agreement [1]
to exchange the details and conditions of the reservation:

• The client requests an agreement template from the MetaScheduling Service.

• The MetaScheduling Service replies with the template containing information about the avail-
able resources (UNICORE Vsites).

• The service sends an agreement proposal containing the resource request information.

• If the (co-)allocation is successful, the MetaScheduling Service returns the final agreement.

Once the (co-)allocation has been completed with the reception of the final agreement the UNI-
CORE client creates the abstract UNICORE job that contains a request specified by the user, submits
the job to the UNICORE gateway and invokes the normal UNICORE processing of a job as described
in Section 2.

In the current framework there is neither a resource detection service nor a resource selection
service, thus the user has to explicitly specify the resources he wants to use for a job, i.e. sites and
corresponding properties of the reservations. In a later version a broker function will be integrated,
allowing a user to describe his request by specifying resource properties and leaving the selection of
appropriate resources to the broker. This also relieves the user from resource discovery and system
selection if he does not want to control these tasks. The MetaScheduling service then may use the
selection suggested by the broker to negotiate the co-allocation or other QoS requirements specified
by the user.

4. Future Work

The performance of the the MetaScheduling Service – integrated into UNICORE middleware –
will be explored in a performance evaluation. For this purpose the distributed test environment
within the VIOLA project is used as a basis. Within this test environment several compute resources
are integrated, each one equipped with a different resource management system capable of advance
reservation. We will use EASY, PBS Professional, and CCS, while the latest version of LoadLeveler
Multi-Cluster (LL-MC), which also supports advance reservations, will be integrated as soon as the
production version becomes available.

This test environment will be used to evaluate the performance of the MetaScheduling Service
architecture with different baseline scenarios, applied workloads, and meta-job requests. Besides
measuring the costs of scheduling for placing meta-jobs with advance reservations, additional criteria
will be evaluated. For example, the success of the MetaScheduling Service in placing meta-jobs can
be measured by the rejection rate for such jobs with given start times, and by the average waiting
time for meta-jobs, which should be placed by the MetaScheduling Service as soon as possible after

62

7

Adapter

UNICORE

Client

WS-Agreement/Notification

multi-site jobs

Local

Scheduler

UNICORE

Server

Local

Scheduler

UNICORE

Server

AdapterAdapter

Local

Scheduler

UNICORE

Server

GatewayGateway

UsiteUsite

MetaScheduling

Service

Figure 3. The meta-scheduler architecture

their submission. Additional metrics will be used if meta-jobs are described only by their total
size of requested processors and not with a by partitioning. The local schedulers’ performance is
also influenced by the MetaScheduling Service, as the sub-parts of meta-jobs are placed as advance
reservations and thereby influence the local scheduler when scheduling local batch jobs. Hence, the
slowdown or average response time of local jobs has to be measured, too.

In addition we will enhance the MetaScheduling Service with Quality of Service and enhanced
Service Level Agreements (SLA) functions. In particular negotiating and guaranteeing resource us-
age will be a key element to bridge the gaps of existing Grid systems as e.g. identified in the NGG2
report [6]. One approach to include such functionality is to apply the planning-based scheduling
approach as described in [5]. Queueing-based scheduling considers only the present use of re-
sources. In contrast, planning-based scheduling plans the present and future resource usage by as-
signing proposed start times to all submitted jobs and updating these whenever the schedule changes.
This concept makes it easy to support guaranteed resource usage through advance reservation. The
planning-based scheduling approach is implemented in the resource management software CCS [7]
and has proved its abilities and benefits in recent years. CCS also provided the basis for an initial
proof-of-concept implementation of a meta-scheduler within the UNICORE Plus project [2, chapter
3.7.2 “Distributed Applications”].

5. Conclusion

Coordinated and guaranteed resource provision with QoS and SLA support is a key element of
modern resource management and scheduling solutions for Grid environments. UNICORE and its
WS-Agreement based resource management framework already provide many desired capabilities.
Within the VIOLA project a MetaScheduling Service was developed, which uses advance reserva-
tions on local systems for placing multi-site jobs onto the Grid.

In this paper we presented the integration of the MetaScheduling Service into the UNICORE Grid
system, work that is carried out to provide meta-scheduling functions for the VIOLA testbed. Details
of the implementation and the meta-scheduling processes were given. An even tighter integration
with UNICORE will become possible once the Unicore/GS software will be available.

63

8

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification, July 2005. Online:
https://forge.gridforum.org/projects/graap-wg/document/WS-AgreementSpecification/en/16.

[2] D. Erwin, editor. UNICORE Plus Final Report – Uniform Interface to Computing Resources. UNICORE
Forum e.V., 2003. ISBN 3-00-011592-7.

[3] I. Foster, C. Kesselmann, J. M. Nick, and S. Tuecke. The Pysiology of the Grid. In F. Berman, G. C.
Fox, and A. J. G. Hey, editors, Grid Computing – Making the Global Infrastructure a Reality, pages
217–249. John Wiley & Sons Ltd, 2003.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Resource Management Systems:
Queuing vs. Planning. In D. G. Feitelson and L. Rudolph, editors, Proc. of the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pages
1–20. Springer, 2003.

[6] K. Jeffery et al. Next Generation Grids 2 – Requirements and Options for European Grids Research
2005-2010 and Beyond, 2004. Online: ftp://ftp.cordis.lu/pub/ist/docs/ngg2_eg_
final.pdf.

[7] A. Keller and A. Reinefeld. Anatomy of a Resource Management System for HPC Clusters. In Annual
Review of Scalable Computing. Singapore University Press, 2001.

[8] J. Nabrzyski, J. Schopf, and J. Weglarz, editors. Grid Resource Management – State of the Art and
Future Trends. Kluwer Academic Publishers, 2004.

[9] PBS Professional. Website. Online: http://www.altair.com/software/pbspro.htm.
[10] G. Quecke and W. Ziegler. MeSch – An Approach to Resource Management in a Distributed Environ-

ment. In Proc. of 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), volume 1971
of Lecture Notes in Computer Science, pages 47–54. Springer, 2000.

[11] M. Riedel, V. Sander, Ph. Wieder, and J. Shan. Web Services Agreement based Resource Negotiation
in UNICORE. In Proc. of the 2005 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’05), pages 31–37. CSREA Press, June 2005.

[12] J. Schopf. Ten Actions When Grid Scheduling – The User as a Grid Scheduler. In J. Nabrzyski,
J. Schopf, and J. Weglarz, editors, Grid Resource Management – State of the Art and Future Trends,
pages 15–23. Kluwer Academic Publishers, 2004.

[13] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY — LoadLeveler API Project. In D. G. Feitelson
and L. Rudolph, editors, Proc. of 2nd Workshop on Job Scheduling Strategies for Parallel Processing,
volume 1162 of Lecture Notes in Computer Science, pages 41–47. Springer, 1996.

[14] Simple Object Access Protocol Specification, SOAP Specification version 1.2. Website. Online: http:
//www.w3.org/TR/soap12.

[15] VIOLA - Vertically Integrated Optical Testbed for Large Applications in DFN, 2005. Web site. Online:
http://www.viola-testbed.net.

64

