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Abstract

Modern classification methods are able to ana-
lyze large, complex and sometimes also unbalanced
datasets. It is important not only to produce good
results but also to control their time effort. High com-
putational costs lead to the exclusion of data mining
methods even in case of good accuracy. Our paper
deals with support vector machines in view of the con-
sumption of CPU time. We study their learning be-
havior for unbalanced datasets with increasing size.
We also examine the question whether it is necessary
and practicable to parallelize this method.

Keywords: support vector machines, training
time, unbalanced data, parallelization.

1 Introduction

All branches of industry work with difficult datasets
often generated by experiments, measurements or sur-
veys. An important goal of data analysis is the de-
tection of certain hidden structures in datasets. One
characteristic part of it is classification. There are sev-
eral well known classification approaches, for example
decision trees, that are effective and well-established
data mining algorithms for nonlinear learning. They
are well accepted, especially because of their under-
standability. Parallelization techniques for decision
trees were introduced in [14].

This paper deals with one of the latest methods in
machine learning. Support vector machines (SVMs)
were developed by Vladimir Vapnik and achieved
enormous popularity during the past ten years. In
the meantime SVMs own a permanent position in the
field of machine learning and they even form a recent
field of research.

Sometimes large datasets are extremely unbal-
anced where in general the smaller class is the interest-
ing one. Such datasets occur e.g. in tumor detection.
Unbalanced classes can cause problems for classifica-
tion algorithms in general, especially when there is
noise in the data and the boundary between the large

negative class and the small positive class is difficult
to find [3].

A lot of publications deal with results obtained
with support vector machines. In general one tries to
outperform other classification methods, for example
artificial neural networks. But how can we assess in-
creasing classification accuracy on a test set, if we have
to accept longer time to receive it? Therefore one im-
portant task is to investigate the changes in running
time of support vector machines for different data sizes
and parameter values. One aim of this paper is to use
an own implementation of an efficient SVM algorithm
to train and test on large datasets. Some results will
show that the application of SVMs for large datasets
is not always easy and parallelization can make sense.
So far it is common in practice to avoid this prob-
lem. Either the dataset or the number of parameter
values for validation are reduced [10, 6]. The results
will show that both methods can lead to suboptimal
outputs and even to increasing training time when ap-
plying for unbalanced data. For this reason some facts
about the parallelization of support vector machines
will be discussed at the end of this paper.

Section 2 introduces the method of support vec-
tor machines. Note that only necessary details will
be mentioned. Section 3 presents and interprets some
test results for real world unbalanced data from in-
dustry. Ideas for parallelizing SVMs will be discussed
in Sect. 4. Finally Sect. 5 contains some conclusions.

2 Support Vector Machines for

Classification

Support vector machines can be used to implement
supervised learning [1], which means to learn input-
output dependencies under usage of a certain amount
of data pairs. The idea behind this procedure is, that
an unknown functional correlation between input and
output can approximately be identified in a finite ran-
dom sample of representative data pairs. Let n ∈ N,
x ∈ R

n and y ∈ R. Then the pair (x, y) is called



input-output pair.
Throughout this paper binary classification will be

studied, that means y ∈ {−1, 1}. Support vector ma-
chines are also suitable for multiple classification und
for regression [1]. To generate a classification func-
tion that will assign any testing point x ∈ R

n to
one class, supervised learning requires a finite number
of input-output pairs (training pairs) (xi, yi)i=1,...,l

where l ∈ N is called the size of the training data.

2.1 Classification Function and Opti-

mization

Let x be a vector with unknown class label. The linear
learning approach used by SVMs considers functions
of the form

flinear(x) =
n
∑

k=1

wkxk + b (w ∈ R
n, b ∈ R) . (1)

The so far unknown parameters w and b character-
ize a classification function that can only form linear
combinations of the n input values. Of course it is
essential to find a way to get a nonlinear classification
function. For this reason we look for a transformation
φ that maps the input data to a feature space F with
dimension N . N as well as φ are unknown but they
yield to

fnonlinear(x) =

N
∑

k=1

wkφk(x)+b (w ∈ F, b ∈ R) . (2)

Statistical learning theory [15] proves that one has
to solve the optimization problem

min
w∈F,b∈R

〈w,w〉F (3)

under the constraints

yi
(

〈w, φ(xi)〉F + b
)

≥ 1 (i = 1, ..., l) (4)

to get a reasonable classification function. (3) is
the separable case, for the nonseparable see e.g. [13]
where the parameter C is explained. C is one of the
parameters for the tests in Sect. 3.

The resulting Lagrange function has the form

L(w, b, α) =
1

2
〈w,w〉F (5)

By reason of duality theory [13] one can solve the
following problem instead of (3):

max
α∈Rl

W (α) (6)

under the constraints

l
∑

i=1

yiαi = 0 ∀i = 1, ..., l, (7)

αi ≥ 0 ∀i = 1, ..., l, (8)

where W has the form

W (α) =

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj〈φ(x
i), φ(xj)〉F .

(9)
Note that for every i ∈ {1, ..., l} the correspond-

ing value αi is either zero or strictly positive. Training
pairs with strictly positive values for αi are called sup-
port vectors and have influence on the resulting dual
classification function

fdual(x) =
l
∑

i=1

yiαi〈φ(x
i), φ(x)〉F + b. (10)

The advantage of (6) is that it has no local solu-
tions [13]. In addition statistical learning theory pro-
vides error bounds for the estimation of classification
risks [15]. One can see that the length of the vector
α corresponds to the number of used training pairs
(xi, yi)i=1,...,l. By now it is clear where the problem
occurs when training SVMs on large datasets.

2.2 Kernel Trick

Optimization of α by maximization of (9) under the
constraints (7) and (8) requires the choice of a feature
mapping φ that is supposed to transform the input
data in a way that allows for separation of the training
pairs with a linear function. Support vector machines
avoid this problem by use of kernels. This means,
the dot products 〈φ(xi), φ(xj)〉F in (9), that cannot
be evaluated without knowledge of φ, are replaced by
the function values k(xi, xj) of a specific kernel k :
R

n×R
n → R. These values generate the kernel matrix

K where Kij = k(xi, xj).
The usage of a kernel makes it possible to work

solely with the original data format. The difficulty
lies in the choice of a kernel as the function k has to
meet some conditions [1]. On the other hand it has
to be suitable for the special dataset. In general the
solution to this dilemma is a standard kernel [1]. For
our tests the Gaussian kernel

K(xi, xj) = exp

(

−

n
∑

k=1

(xi
k − x

j
k)

2

2σ2

)

(11)

was chosen. Note that the kernel parameter σ > 0 is
the second parameter used in all tests.



3 Experimental Evaluation

For all tests we used the iterative nearest point al-
gorithm [8], that was first introduced in 1999. This
algorithm implements a support vector machine for
the 2-norm soft margin approach [1]. We also tested
the sequential minimal optimization algorithm (SMO
[12]), that implements 1-norm soft margin [1], but it
consumed more training time on every dataset and
so the results are omitted. Our Fortran90 code was
compiled with ifort1. The tests were run on an Intel
Pentium 4 processor with 2, 4 GHz and a cache size
of 512 KB.

The underlying data was obtained from pharma-
ceutical industry and is aimed at QSAR modeling.
The complete dataset consists of 40000 data pairs,
20 attributes and 2 classes of active and nonactive
points. Only 38 of the pairs belong to class 1. Thus
the dataset is extremely unbalanced. To our knowl-
edge such data is not typical for publications dealing
with SVM classification. For our tests the number of
attributes has been reduced from 20 down to 5 with
a step size of 5 attributes, the number of data pairs
has been reduced from 40000 to 200 with a step size
of 4000 and some smaller steps at the end, but all 38
pairs in class 1 have been saved. We always used 50%
of a set for training. The other pairs were used for
the test. Please note that the aim was not to produce
optimal classification results, because this would lead
to different parameters C and σ for all sizes of the
training matrix A = (x1, x2, ..., xl) ∈ R

n,l.

3.1 Number of Input-Output Pairs

In principle the training time of support vector ma-
chines is quadratic in l [16, 17]. Furthermore it is
known that the fraction of support vectors is small
[13], but [7] shows that sometimes nearly all training
points can become support vectors. As we do not store
the kernel matrix the nearest point algorithm as well
as other SVM algorithms (e.g. SMO) have to evalu-
ate the kernel function everytime they need a kernel
value. For this reasons the following test results con-
tain running time as well as the absolute and relative
frequency of support vectors and the number of kernel
evaluations during training.

Table 1 shows that training time t is a not a
quadratic function of l. The functional dependency
can approximatively be formulated as

log(t) ≈ 1, 5 · log(l · 10−3)− 1, 4. (12)

In our example the number of kernel evaluations
ke is also proportional to the number of training pairs,
we propose

log(ke · 10−3) ≈ 1, 25 · log(l · 10−3) + 0, 59. (13)

1Intel Fortran Compiler for Linux.

Table 1: Influence of l with constant C = 10, σ = 2
and 10 attributes

l 100 1000 2000

time2 0, 02 0, 35 0, 95

support vectors3 66 174 208

% support vectors4 66, 0% 17, 4% 10, 4%

kernel evaluations5 0.124 2.035 5.103

4000 6000 8000 10000 12000

2, 40 3, 62 5, 38 7, 29 9, 72

249 271 300 328 347

6, 2% 4, 5% 3, 8% 3, 3% 2, 9%

11.668 16.344 22.547 29.803 37.304

14000 16000 18000 20000

12, 32 18, 80 22, 27 27, 37

369 374 389 414

2, 6% 2, 3% 2, 2% 2, 1%

44.652 57.864 73.420 85.006

Figure 1 shows a plot of our test cases. Please
note that the number of data points includes training
as well as test points.

2000 8000 16000 32000

20

10

5

seconds

data points

Figure 1: SVM running time as a function of the num-
ber of data points

3.2 Number of Attributes

Training time of support vector machines is said to be
linear in n [16, 17]. Table 2 shows a reverse charac-
ter for the unbalanced dataset. This fact is important

2time for complete training and testing in seconds

3absolute frequency of support vectors in training data

4ratio of support vectors and training points

5sum of all kernel evaluations during training divided by 10
3



Table 2: Influence of n for constant C = 10, σ = 2
and 4000 training points

n 5 10 15 20

time 7, 39 2, 42 1, 60 1, 39

support vectors 672 249 226 226

% support vectors 16, 8% 6, 2% 5, 7% 5, 7%

kernel evaluations 45.843 11.668 7.093 5.977

since often one tries to reduce the number of attributes
before starting support vector training. For the tests
presented here this technique would result in more
support vectors and kernel evaluations. We reduced
the number of attributes in a way, that always pre-
served the most important attributes. The tests with
n = 5 and n = 10 have the same accuracy, but train-
ing times differ by a factor of 3 plus the time spent
for searching the important 5 attributes out of 10. By
now it is clear that feature selection can also have neg-
ative effects and it is necessary to examine pros and
cons of data reduction algorithms.

Figure 2 shows a plot of our test cases.
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Figure 2: SVM running time as a function of the num-
ber of attributes

3.3 Parameter C

C is an important parameter for the application of
support vector machines. It is recommended to choose
small values for C as in general larger values take
longer training time. The following results, see Ta-
ble 3, show that smaller values for C sometimes result
in longer training time as well as more support vec-
tors and kernel evaluations. Note that C = 100, that
led to minimal training time and minimal number of
kernel evaluations, is the optimal value in view of ac-
curacy. Possibly these characteristics can help to pro-
duce good classification results. In general it makes
no sense to avoid large values for C as we are always
interested in high accuracy.

Table 3: Influence of C for constant σ = 2 and a
4000× 10 training matrix

C 0.1 1

time 4, 86 2, 63

support vectors 1407 529

% support vectors 35, 2% 13, 2%

kernel evaluations 30.660 13.720

10 100 1000

2, 39 1, 99 3, 22

249 128 90

6, 2% 3, 2% 2, 3%

11.668 6.829 9.091

3.4 Implications

The tests showed that for our dataset running time
is directly proportional to l but not to n. In addi-
tion there are important dependencies between accu-
racy, training time, fraction of support vectors and the
number of kernel evaluations, see e.g. Table 3, where
the training for C = 100 with the smallest number
of kernel evaluations led to the highest accuracy. In
this paper we don’t show accuracy valules, since non-
optimal parameter values have been used for compari-
sion of training time. For the performance of SVM’s in
real life unbalanced data we refer to our work [9]. We
have to mention that often good parameter values led
to the smallest training times and thus we conclude,
training time can be seen as key-figure for SVM model
selection, too. We also conclude that reduction of the
data matrix in one or both dimensions and changes
in the value for C do not always lead to dramatical
changes of time in a certain direction. At first they re-
sult in different mathematical models. The benignity
of such models influences running time. For practice
it is important to understand that feature selection
and data splitting can cause suboptimal classification
functions with nearly the same training time.

4 Parallelization

By now it is clear that for reason of accuracy it is
best to use the entire information a dataset provides
to the user. It goes without question that training and
testing time can be a problem for very large datasets.
Parameter optimization is very time consuming, too.
Usually the optimal parameter values are unknown.

Assuming one has to train a support vector ma-
chine with Gaussian kernel and two parameters for C
(C+ and C−) [11]. (A value for C+ that is greater
than the value for C− supports the small positive
class.) If 10 values for σ, 5 for C+ and also 5 values
for C− are used to perform tenfold cross validation,



the task is to train the SVM 2500 times on 90 per-
cent of the training data and test it on the remainder
respectively.

The example above points out the importance of
self-acting and parallel parameter search to ensure
that chosen parameters are close to the optimal values.
This type of parallelization is trivial but in addition to
the idea of grid-search [6] it makes sense not to test all
intended combinations. At first the intervals should
be large, after some parallel training steps they should
get smaller. This procedure guarantees maximum us-
age of resources and allows e.g. to perform a multiple
classification task using the one against one approach
[5] with acceptable running time and optimal results.
Other parallel parameter optimization methods can
be used, too [4].

But there is another approach. For very large
datasets it can make sense to parallelize training as
well as testing. For the test stage it means again
farming because every processor uses the same classi-
fication function for its test points independently. In
contrast to farming tasks implementation of a parallel
SVM training is difficult.

The objective function of the optimization prob-
lem is

W (α) =

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjQij , (14)

with

Qij = yiyjKij (1 ≤ i, j ≤ l). (15)

The Gram matrix Q ∈ R
l,l is symmetric [1] and

can be transformed to a block diagonal matrix, that
splits the problem into independend tasks [2] and al-
lows parallel handling of the optimization process.

In general the transformation is not easy, because
it is necessary to generate a sensible number of blocks
with nearly the same size to operate at full capacity.
But there is another problem concerning (7). The con-
straint cannot be divided trivially into subproblems.
In [2] this problem is not mentioned.

Another promising parallelization technique pre-
sented in [18] uses parallel handling of time consum-
ing matrix operations to speed up SVM training of de-
composition methods, nevertheless the are still some
bottlenecks to consider.

5 Conclusion and Outlook

Support vector learning is very sensitive regarding the
quality of the training data and the parameter values,
especially for unbalanced data. For real life data with
a very small amount of positive points it is essential to
use all training points, if possible. Pruning of train-
ing data can lead to suboptimal decision functions
that are not able to classify unseen points, especially

the positives. For this reason it is of great interest
to study parallelization techniques for SVMs. These
may include parallel parameter search, parallel valida-
tion steps and parallel training. We showed that the
farming approach for parameter optimization and for
classification of test points is easy, but the implemen-
tation of a parallel training algorithm is complicated
and depends on the characteristics of the Gram ma-
trix. Our future work will concentrate on SVM’s with
different stages of parallelism specialized for large and
unbalanced data from real world applications with a
certain amount of noise.
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