000048247 001__ 48247
000048247 005__ 20180210143748.0
000048247 0247_ $$2WOS$$aWOS:000254444000014
000048247 037__ $$aPreJuSER-48247
000048247 041__ $$aeng
000048247 082__ $$a540
000048247 084__ $$2WoS$$aChemistry, Multidisciplinary
000048247 1001_ $$0P:(DE-HGF)0$$aChihaia, V.$$b0
000048247 245__ $$aDivergence-Free Description of Molecular Rotation in Cartesian Coordinates: The Axis-Rotation Formula and some of its Applications to Computational Chemistry
000048247 260__ $$aBucure¸sti$$bEd. Acad. Române$$c2007
000048247 300__ $$a
000048247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000048247 3367_ $$2DataCite$$aOutput Types/Journal article
000048247 3367_ $$00$$2EndNote$$aJournal Article
000048247 3367_ $$2BibTeX$$aARTICLE
000048247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000048247 3367_ $$2DRIVER$$aarticle
000048247 440_0 $$019701$$aRevue Roumaine de Chimie$$v52$$x0035-3930$$y8
000048247 500__ $$aRecord converted from VDB: 12.11.2012
000048247 520__ $$ain this work, based on simple algebraic manipulations, the divergence-free description of molecular rotations is revisited using the axis-rotation formula for the rigid-body system. The so-called axis-rotation formula is useful in various fields of computational chemistry, including molecular simulations, graphical rendering and group theory, allowing more convenient ways to construct and to manipulate the atomic or fragment structures of rotations. It is shown that the analytical expression of the axis-rotation operator facilitates obtaining the symmetry operator in analytical form, which is useful in the determination of group symmetries of molecules and the adaptation to the symmetry of atomic and molecular orbitals.
000048247 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000048247 588__ $$aDataset connected to Web of Science
000048247 650_7 $$2WoSType$$aJ
000048247 65320 $$2Author$$aaxis-rotation formula
000048247 65320 $$2Author$$arigid-body system
000048247 65320 $$2Author$$aaxis-rotation operator
000048247 65320 $$2Author$$asymmetry operator
000048247 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b1$$uFZJ
000048247 7001_ $$0P:(DE-HGF)0$$aLee, C.-S.$$b2
000048247 7001_ $$0P:(DE-HGF)0$$aSuh, S.-H.$$b3
000048247 773__ $$0PERI:(DE-600)2614292-2$$gVol. 52$$q52$$tRevue roumaine de chimie$$v52$$x0035-3930$$y2007
000048247 909CO $$ooai:juser.fz-juelich.de:48247$$pVDB
000048247 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000048247 9141_ $$y2008
000048247 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000048247 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000048247 970__ $$aVDB:(DE-Juel1)75934
000048247 980__ $$aVDB
000048247 980__ $$aConvertedRecord
000048247 980__ $$ajournal
000048247 980__ $$aI:(DE-Juel1)JSC-20090406
000048247 980__ $$aUNRESTRICTED