001     48252
005     20180210135251.0
024 7 _ |2 DOI
|a 10.1016/j.cpc.2005.03.085
024 7 _ |2 WOS
|a WOS:000230528100083
037 _ _ |a PreJuSER-48252
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Attig, N.
|b 0
|u FZJ
|0 P:(DE-Juel1)132045
245 _ _ |a Demonstration of string breaking in quantum chromodynamics by large-scale eigenvalue computations
260 _ _ |a Amsterdam
|b North Holland Publ. Co.
|c 2005
300 _ _ |a 382 - 385
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Computer Physics Communications
|x 0010-4655
|0 1439
|v 169
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present results of our ongoing determination of "string breaking" in quantum chromodynamics (QCD) including two dynamical light quarks. Our investigation of the fission of the string between a heavy (static) quark and a corresponding antiquark into a meson-antimeson system is based on dynamical configurations of size 24(3) x 40. The all-to-all light quark propagators occurring in the transition element are computed from a set of 200 low-lying eigenmodes of the Hermitian Wilson-Dirac matrix which encodes the effect of the dynamical quarks. These eigenmodes are calculated on the 1312-node IBM p690 system at the John von Neumann Institute in Julich. Combining the eigenvalue computations with a variety of ground state enhancing optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. We observe-for the first time ever in a simulation of 4-dimensional lattice-QCD-level-splitting as the perfect signature for dynamical string breaking between ground state and excited potential. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Betrieb und Weiterentwicklung des Höchstleistungsrechners
|c I03
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK254
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a lattice quantum chromodynamics
653 2 0 |2 Author
|a eigenvalue computation
653 2 0 |2 Author
|a PARPACK
700 1 _ |a Bali, G. S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Düssel, T.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB48500
700 1 _ |a Lippert, T.
|b 3
|u FZJ
|0 P:(DE-Juel1)132179
700 1 _ |a Neff, H.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Prkacin, Z.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB48501
700 1 _ |a Schilling, K.
|b 6
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.cpc.2005.03.085
|g Vol. 169, p. 382 - 385
|p 382 - 385
|q 169<382 - 385
|0 PERI:(DE-600)1466511-6
|t Computer physics communications
|v 169
|y 2005
|x 0010-4655
856 7 _ |u http://dx.doi.org/10.1016/j.cpc.2005.03.085
909 C O |o oai:juser.fz-juelich.de:48252
|p VDB
913 1 _ |k I03
|v Betrieb und Weiterentwicklung des Höchstleistungsrechners
|l Wissenschaftliches Rechnen
|b Information
|0 G:(DE-Juel1)FUEK254
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 0
970 _ _ |a VDB:(DE-Juel1)75943
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21