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Holistic Hardware Counter Performance Analysis of Parallel Programs

Brian J. N. Wyliea, Bernd Mohra, Felix Wolfa

aJohn von Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany

The KOJAK toolkit has been augmented with refined hardware performance counter support, in-
cluding more convenient measurement specification, additional metric derivations and hierarchical
structuring, and an extended algebra for integrating multiple experiments. Comprehensive auto-
mated analysis of a hybrid OpenMP/MPI parallel program is demonstrated with performance exper-
iments, containing communication and synchronisation metrics combined with a rich set of counter
metrics, which provide a holistic analysis context and facilitate multi-platform comparison.

1. Introduction

Modern microprocessors have integrated event counters which offer low-overhead access to a po-
tential wealth of execution performance information, encompassing the utilisation and efficiency of
various functional units and the memory and cache hierarchy. Although microprocessors from differ-
ent manufacturers, and also within microprocessor families, provide broadly similar functionality,
there are often very significant differences: variation in processor architecture and memory/cache
hierarchy are reflected in corresponding event provision, and when combined with restrictions on
which events may be measured simultaneously (and limited numbers of event counters) this greatly
complicates performance measurement and analysis.

Various libraries have addressed the measurement issues, providing a portable application pro-
gramming interface to event counter control and access (e.g., PAPI [6]). Along with interfacing to
system libraries, these offer standardised definitions forthe most important and universally available
events, and mappings to the native events provided by each microprocessor. Additional events may
be derived from one or more native events (if the processor supports their simultaneous measure-
ment) and imposed counter time-sharing/multiplexing may provide a means for approximating the
measurement of multiple counters within a single program execution. Although these approaches
address the goal of acquiring a richer set of measurements ina particular experiment, it is notable
that there is corresponding additional complexity which complicates interpretation. There may also
be ambiguities in the definitions of events (such as whether speculative instructions are included in
event counts or not) which must also be taken into account during their analysis.

Interpretation and analysis of performance counters has therefore been hindered, limited to a very
small subset of the potentially usable events, and often specific to particular processor platforms.
One goal of our current work has been to investigate the extent that it is possible to incorporate a
wider range of counter metrics, both universal and platform-specific, and exploiting multiple mea-
surement experiments where necessary, for holistic analysis of execution performance.

1.1. Initial KOJAK approach
Previous developments of the KOJAK performance measurement and analysis environment for

parallel programs, which supports many current computer systems1, offer a suitable vehicle for pur-
suing this investigation. KOJAK provides semi-automatic instrumentation of user applications and
automatic analysis of performance problems arising from inefficient usage of parallel programming

1Download available fromhttp://www.fz-juelich.de/zam/kojak/
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interfaces (such as MPI and OpenMP) [1,2]. Performance problems are classified by type and quan-
tified by severity, for investigation via an interactive browser (CUBE) which presents an integrated,
hierarchical view of performance behaviour, call path and process/thread of execution.

A basic infrastructure also exists in KOJAK for measuring counter events and their incorporation
into hierarchical analyses alongside communication and synchronisation metrics. One approach
extended KOJAK’s portable execution tracing to directly include counter measurements and in-
corporate them in its various analyses [3]. Another incorporates hardware counter analysis from
separate platform-specific profiling tools with KOJAK’s ownexecution trace analysis [4]. In both
cases, counter measurements/metrics are related to program and system entities (i.e., the call tree,
processes and threads) and quantified. While the second approach has a limited separated hierarchy
of raw counter measurements, the first was an initial attemptto assess corresponding time penalties
and integrate these with KOJAK’s directly-measured time-based performance properties.

Quantifying time-penalties for event counts was promising, however, further investigation with
additional metrics highlit the limitations of the approach. Where KOJAK identified a metric tu-
ple (call-path and thread) with an occurrence rate above or below a certain threshold, it derived a
performance penalty as the entire measured execution time of that tuple; in effect it used an upper
bound on the actual penalty, for want of a better approximation. Comparing the derived performance
penalties with those directly measured from cycles-based stall counters (on platforms which support
them, e.g., UltraSPARC [9]), showed that while they were broadly representative, they were also
significantly exaggerated. In this case, the measured penalties could have been used to adjust the
performance penalty derivations to improve their accuracy, though the derivations would inevitably
be platform-specific (and it would generally not be possibleto quantify the actual penalties). Fur-
thermore, the performance of a tuple is ultimately due to multiple causes, manifesting in multiple
counter metrics and also non-counter metrics (e.g., communication and synchronisation times), in
complex dynamic relationships, such that it is not possibleto accurately determine the time penalty
related to a single count measurement. Although the exaggeration of particular performance aspects
can be broadly in-line with their actual severity, and as such benefit analysis, in practice it was found
to have a detrimental impact on the analysis as a whole, by subtly compromising its integrity.

2. Refined design for hardware counter measurement and analysis

A more robust foundation for incorporating event counts from hardware counters into perfor-
mance experiments is to integrate them in separate metric hierarchies presented alongside that for
measured time metrics. This is particularly the case when larger numbers of counters are measured
for analysis. Since it is rare that processors support simultaneous measurement of all of the coun-
ters of interest, multiple measurements with subsets of counters may be required, with these partial
experiments integrated into a single comprehensive analysis. Assistance can also be provided with
specification of appropriate sets of counters for measurement, and multiple presentation hierarchies
may be valuable during analysis.

These various aspects have been addressed to refine KOJAK support for counter-based analysis
within the existing framework of MPI and OpenMP communication and synchronisation analysis.

2.1. Structured analysis via metric hierarchies
Defining hierarchies of related counter events both provides an improved structure for navigating

and interpreting the relationships between events (such asdata references encompassing loads and
stores, or hits and misses at different levels of cache and memory) and assessing their significance
(e.g., cache misses as a proportion of references). In some cases, it can be clear that a single natural

188



hierarchy of related events can be defined. Generally, however, a set of event data may profitably
be structured in several hierarchies, where it may not be possible to determine in advance which
is most valuable: indeed, the various hierarchies are oftencomplementary rather than redundant.
Furthermore, while part of a hierarchy may be platform/processor-independent, it is desirable to
be able to include available platform/processor-specific events for a more complete and detailed
understanding of execution performance, which itself may well be platform-specific.

For example, consider the hierarchy of caches used to improve the performance of data accesses
from memory. A general categorisation of data (and instruction) accesses uniquely associates them
with the level of cache or system memory from which they are provided, i.e., where they hit:

DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + ... + DATA_HIT_MEM

It can also be inferred that misses occurred in lower levels of cache. Data accesses to each level can
be reads/loads or writes/stores, offering the next generaldivision:

DATA_HIT_L1$ = DATA_LOAD_FROM_L1$ + DATA_STORE_INTO_L1$

It is worth noting that this general hierarchy, while applying to a variety of processors and systems,
contains elements which will not apply on all: e.g., IBM p690+/POWER4-II [7] has three levels of
cache whereas Opteron [8] and UltraSPARC-III/IV [9] only have two, and while the latter can regis-
ter stores into each level of cache (and memory) the former only registers stores into L1 cache which
write-through to the rest. This is readily handled with the proposed structuring, as the inapplicable
L3 cache measurements can be treated as zero-valued (i.e., equivalent to a non-functional L3 cache).

Provision of hardware counters also varies considerably byprocessor/system. Opteron has a
counter to measure data accesses directly, so an Opteron-specific definition can be used,

DATA_ACCESS = DC_ACCESS # Opteron

however, data accesses must be derived from thecomposition of other events on UltraSPARC-III/IV
and POWER4-II, and such composed metrics are fundamental tothe hierarchical structure. L1
cache read and write hits can not be measured directly by the UltraSPARC or POWER4-II counters,
however, they can be determined by acomputation2 with measured counters:

DATA_LOAD_FROM_L1$ = DC_rd - DC_rd_miss # US-3/4
DATA_STORE_INTO_L1$ = DC_wr - DC_wr_miss # US-3/4
DATA_LOAD_FROM_L1$ = PM_LD_REF_L1 - PM_LD_MISS_L1 # POWER4
DATA_STORE_INTO_L1$ = PM_ST_REF_L1 - PM_ST_MISS_L1 # POWER4

Opteron doesn’t provide counters which can distinguish L1 cache read and write hits, or even
allow their combination to be measured directly, however, this can also be computed instead:

DATA_HIT_L1$ = DC_ACCESS - DC_MISS # Opteron

While such computed metrics provide a valuable means for completing the general hierarchies,
when compositions are not available, they don’t provide thebenefit of extending the hierarchies in
the way that composed metrics naturally do. For example, data load hits from L2 cache are composed
from multiple native events on Opteron and POWER4-II, respectively:

DATA_LOAD_FROM_L2$ = DC_L2_REFILL_O + DC_L2_REFILL_E + DC_L2_REFILL_S # Opt
DATA_LOAD_FROM_L2$ = PM_DATA_FROM_L2

+ PM_DATA_FROM_L25_MOD + PM_DATA_FROM_L25_SHR
+ PM_DATA_FROM_L275_MOD + PM_DATA_FROM_L275_SHR # POWER4

2The termcomputation is defined as a general calculation which can include subtractions (and potentially other arith-
metic operations), whereascomposition is defined to be strictly additive.
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Although these compositions have quite different constituent measured counters, they naturally
extend the general hierarchy with additional platform-specific detail, which can offer further insight
for performance tuning on the respective platforms. While each (dual-core) POWER4-II processor
has its own local L2 cache, it shares this with the other processors on its multi-chip module (MCM,
L25) and the processors on the other MCMs in its node (L275), all of which are faster than accessing
L3 cache (which is similarly shared), so local versus remoteL2 cache accesses impact performance.

This process of deriving hierarchies of new metrics from compositions and computations of avail-
able measurements is able to create quite comprehensive structured relationships for data, instruction
and TLB accesses (and associated hits and misses), with a general structure extended by additional
platform-specific components. Metrics which are not applicable, or can’t be derived from available
measurements can be omitted. When a composition is only partially satisfied by available measure-
ments, it can still be valuable to retain it, but it should be clearly indicated as incomplete, such as
including ‘∼’ in its label. (Where a particular set of measurements include such partially satisfied
derivations, these may subsequently be completed when experiments are combined.) Partial com-
putations can have negative values or values in excess of their parent, such that it’s generally not
prudent to retain them: in most cases, measurements can be grouped such that those required for
computed metrics are kept in the same group to avoid this.

Similar structuring can also be applied to the types of instruction processed by various functional
units and cycles-based counters for related busy/stall andidle periods. In these cases, more of the
measurements are platform-specific and while it’s still possible to have a hierarchical relationship,
there are typically more ‘gaps’ corresponding to unmeasurable/unaccounted events. There can also
be considerable ambiguity regarding particular events andthe counters which measure them. For
example, since storing floating-point data is typically done by the floating-point unit (FPU), this is
often naturally accounted as a floating-point event: where this is not desired, the corresponding event
measurement can be relocated to another category, such asMEMORY. Often, however, it may not be
possible to distinguish the different kinds of events counted by particular functional units. There
may also be inconsistency between counting instructions issued and those which actually complete.

While a general classification and hierarchy of a variety of processor events can be developed, it
is ultimately necessary to refer to the respective processor manuals (and associated documentation
of native counter events) to assess their significance [7–9].

2.2. Flexible metric specification and customisation
Metric structuring which specifies (presumed) relationships between events provides a mecha-

nism for helping to navigate and understand those relationships. While generic hierarchies such as
those described offer one particular structuring, alternative or complementary structures may also be
defined and preferable in some cases. Measured events which fit no hierarchy must simply be listed
separately (as is the case when no relationships are associated with a metric).

A flexible approach is therefore taken, which provides the specification of metric relationships in
a text file which is read to configure and structure the analysis: specifications shown in the previous
subsection are extracts from such a file. The default specification can then be overridden to provide
alternative analyses when desired. A specification file alsooffers convenience during measurement
collection, providing definitions of groups of counters which can usefully be collected in the same
measurement, i.e., taking into account restrictions on thenumber and types of events that can be
counted simultaneously. Although it is possible to use PAPIpreset names for counters to create
notionally-portable groups, it is preferable to specify platform-specific groups directly in terms of
native events, since many of the relevant native events haveno corresponding PAPI preset definition
and combination of presets is still subject to the same platform-specific limitations.
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2.3. Holistic analysis via integration of multiple experiments
Analysis of hardware counter measurements, and metric derivations therefrom, can take two broad

approaches. The first sticks strictly to what can be reliablydetermined from a single measurement
experiment (as is the case for HPM [7] and Apprentice2 [10]), and as such is significantly limited by
the flexibility and capabilities of the actual monitoring hardware provided by the processor. Several,
separate experiments with different sets of measurements may be considered, with the implicit un-
derstanding that the execution may be quite different in each case. An alternative uses time-sharing
or multiplexing to automatically change the events measured throughout the duration of an experi-
ment, and extrapolate from these partial measurements to a larger set of approximate measurements.
Whereas this has the convenience and benefit of handling a single execution, it can be compro-
mised by variations in behaviour within the execution (though these may be small if the execution is
sufficiently regular and long with respect to the time-sharing period).

Requiring multiple executions is a significant overhead, however, it also provides an opportunity to
consider possible run-to-run variations and incorporate them in the analysis. While past results are no
guarantee of future performance, they can help indicate what range of performance can reasonably be
expected. This is particularly useful for deterministic applications when the hardware configuration
is unchanged and executions occur in a relatively controlled (dedicated) environment.

KOJAK’s CUBE algebra operators [1] allow experiments to be combined to produce the mean
of multiple related experiments or to aggregate experiments containing different hardware counter
metrics. Combining both approaches can be used to reduce run-to-run variations and extend the
metric analyses to the set of experiments. Furthermore, thedifference of two experiments can be
calculated to examine variations between them.

The existing merge utility produced an experiment with the union of metrics, call-paths and pro-
cess/thread measurements in input experiments. This was extended to integrate experiments contain-
ing identical call-path and process/thread trees, but different sets of measured and derived hardware
counter metrics. Measurements replicated in more than one experiment are averaged, however, mea-
surements contributing to metric compositions, and which are only partially fulfilled in individual
experiments, are accumulated to allow the compositions to be completed. Where available, measured
metric values are also retained in preference to partially computed or accumulated values.

3. Results

To demonstrate these new KOJAK capabilities, three comprehensive sets of experiments consist-
ing of complementary groups of hardware counter measurements were collected on an IBM Regatta
cluster, Cray XD1 cluster and Sun Fire E25000, using the ASC Purple sPPM v1.1 benchmark [11].
This application uses a simplified piecewise parabolic method (PPM) to solve a 3D gas dynamic
problem on a uniform Cartesian mesh. It is written mostly in Fortran 77 and can simultaneously ex-
ploit multithreading for shared-memory parallelism and domain decomposition with message pass-
ing for distributed parallelism: the double-precision (64-bit) hybrid parallelisation tested used 32
MPI processes each with 2 OpenMP threads. The processes werepartitioned2 × 4 × 4 in the
X×Y ×Z dimensions, a configuration chosen to offer a reasonably close comparison between the
experiments on the different systems, rather than being optimised for any particular system.

Preparation of the instrumented application executables was done by prependingkinst-pomp to
the commands that invoke the compiler and linker. This runs asource preprocessor to automati-
cally instrument the application’s 12 OpenMP parallel DO loops, 41 explicit barriers and various
additional single and master blocks, and link instrumentedPMPI and POMP libraries along with
the PAPI library for hardware counter measurements. To provide additional context for the analysis,
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while avoiding overheads associated with automatically instrumenting the entry and exits of every
application routine, the program’s main phases and the key routines using MPI and OpenMP had
also previously been manually annotated with POMP region instrumentation directives [5]. When
the instrumented applications are executed in the usual fashion (and with optional hardware counter
measurements configured through an environment variable),the instrumented events are recorded in
per-thread trace buffers which are subsequently merged into single traces for each execution.

The experiments used two p690+ nodes of an IBM Regatta cluster (running AIX 5.2 and con-
nected via HPS) consisting of 4 MCMs with 4 dual-core POWER4-II processors, 32 nodes of a Cray
XD1 cluster (running GNU/Linux 2.6 and connected via RapidArray network) each with two AMD
Opteron 248 processors, and a Sun Fire E25000 (running Solaris 9) with dual-core UltraSPARC-
IV processors. On the IBM system, 6 experiments were collected (with up to 8 counters in each),
whereas 10 experiments (each with 4 counters) on the XD1 and 18 experiments (each with 2 coun-
ters) on the E25000 were required to acquire a comparable level of detail. These sets of experiments
were subsequently incorporated into a single composite analysis experiment for each platform.

3.1. Comparative experiment analysis
For this analysis, execution times (and other absolute measurements) are less important than re-

lationships between measurements, whether within a set of experiments or between sets: Figure 1
shows a view of the analysis of the XD1 and Regatta experiments. Due to space limitations, the
E25000 experiment is not included in this abbreviated analysis: for additional analyses see [12].

Wall-clock execution time of 180s (163s in therunhyd computational kernel) on the XD1 com-
pares with 280s (241s inrunhyd) on the Regatta for each experiment. Parallel initialisation over-
heads (in theinit phase) amount to 1.9% of execution time on the Regatta versus0.5% on the XD1,
with the balance attributed predominantly to therunhyd computational kernel, within which the six
routines responsible for the hydrodynamics each account for roughly equal shares of the total, and
each has good load balance over the 64 threads (32 processes)on both platforms.

The respective proportions of total execution time attributed to MPI are very similar — 1.7% on
XD1 vs. 2.2% on Regatta — and investigating further, this corresponds primarily to point-to-point
communication, with (the master threads of) every fourth process responsible for contributing twice
as much as the others. TheMPI Allreduce in glblmax at the end of the main computation loop
in runhyd can also be found to require a significantly higher collective wait time on the Regatta,
totalling 127s (0.77%) versus 15s (0.15%) on the XD1.

OpenMP runtime costs on the XD1 are attributed 3.3% of total execution time, versus 0.9% on
Regatta, further categorised as explicit barrier synchronisation wait time in each case. Whereas this
is mostly attributed to the six hydrodynamics routines on the XD1, with only 4% in the barrier at the
end of the computational loop, on the Regatta that final barrier is attributed 82%.

Some potentially important differences in the MPI and OpenMP communication and synchroni-
sation can therefore be seen in the XD1 and Regatta experiments, however, they also demonstrate
broadly similar parallelisation efficiency. Proceeding beyond the parallel execution, communication
and synchronisation times, additional performance metrics are provided by and derived from hard-
ware counters measurements. While subsets of the counter-based metrics are available in individual
experiments, in combination they offer comprehensive insight into the processors’ execution.

Comparing the proportion of mispredicted branches (BRANCH_MISP), while relatively small in
both cases, at 0.58% of all instructions (7.0% of branches) it is considerably larger for Regatta
than the 0.08% (1.5%) of Opteron, and depending on the selected call-path is also seen to vary
considerably by thread, with some threads notably more affected than the others. The significance
can be investigated further by examining the respective counters which measure branch stall cycles.
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Figure 1. Two KOJAK analyses of combined hybrid OpenMP/MPI sPPM benchmark executions on
equisized Cray XD1 Opteron and IBM Regatta p690+ POWER4-II clusters (in front and below).
Performance metrics (left pane) and their distribution over the program’s call tree (middle pane) and
process/thread tree (right pane) are presented hierarchically. Metric values have been expressed as
percentage of total execution time or root counter value, and shown with squares coloured according
to the scale at the bottom. Selectively expanding or collapsing nodes in each of the three linked
trees allows analysis at different levels of granularity. The currently selected metric for branch
misprediction rates (with its derivation visible in the pop-up) and the call-tree path ending with the
parallel loop in one of the six key hydrodynamics routines are shown boxed (and corresponding
details provided in the area at the bottom). Important processes/threads and other call-paths are
shown underlined and appear darkest in the lower right virtual process topology display. Each set of
experiments has identical call-tree and system tree hierarchies, and only performance metrics which
are platform-specific counters differ, yet the broad similarity facilitates comparisons between them.
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Both processors are seen to have 97% of data accesses hit L1 cache, however, it is the increasingly
costly accesses that miss L1 cache and must be satisfied from higher caches and memory that are
most significant and warrant further investigation. On p690+ these are seen to be predominantly
from local L2 cache (PM_DATA_FROM_L2), with only 0.14% requiring to come from memory. With
its smaller, two-level caches, Opteron must load twice as much (0.27%) of its data from memory.

4. Conclusion

Refinement of KOJAK’s hardware-counter-based analysis retained much of the existing measure-
ment, recording and analysis infrastructure, with the incorporation of functionality for more conve-
nient counter-metric measurement specification, additional metrics derivable from measured metrics,
and customisable structured metric hierarchies. Furthermore, the algebra for integrating multiple
experiments was extended to consolidate experiments containing (sub)sets of counter-based metrics
and produce unified experiments with all of the available measured and derivable metrics.

Unified experiments, containing communication and synchronisation metrics combined with a
rich set of counter metrics, support comprehensive holistic analysis of parallel programs: execu-
tion inefficiencies may be isolated to particular processors (or threads) and their various functional
units, or found to relate to the use of shared and distributedcaches and memory within modern
computer systems. The portable CUBE format of analyses alsoallow fuller comparison between
platforms, where architectural differences may be significant. These capabilities contrast those of
existing tools which can also offer detailed platform-specific analysis when appropriately directed
by knowledgable users, but without a holistic overview and context, or multi-platform comparison.
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