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Holistic Hardware Counter Performance Analysis of Paralld Programs
Brian J. N. Wyli¢', Bernd Moht, Felix Wolf*

2John von Neumann Institute for Computing, Forschungsaenfitilich, D-52425 Julich, Germany

The KOJAK toolkit has been augmented with refined hardwartopaance counter support, in-
cluding more convenient measurement specification, aaditimetric derivations and hierarchical
structuring, and an extended algebra for integrating ipleltexperiments. Comprehensive auto-
mated analysis of a hybrid OpenMP/MPI parallel program reaiestrated with performance exper-
iments, containing communication and synchronisatiorriceetombined with a rich set of counter
metrics, which provide a holistic analysis context andlfiate multi-platform comparison.

1. Introduction

Modern microprocessors have integrated event counterdwdfiier low-overhead access to a po-
tential wealth of execution performance information, enpassing the utilisation and efficiency of
various functional units and the memory and cache hierarshiyough microprocessors from differ-
ent manufacturers, and also within microprocessor fagjileovide broadly similar functionality,
there are often very significant differences: variation iagessor architecture and memory/cache
hierarchy are reflected in corresponding event provisiod,\®ahen combined with restrictions on
which events may be measured simultaneously (and limitetbeus of event counters) this greatly
complicates performance measurement and analysis.

Various libraries have addressed the measurement issuesdipg a portable application pro-
gramming interface to event counter control and access @Ad1 [6]). Along with interfacing to
system libraries, these offer standardised definitionfh®most important and universally available
events, and mappings to the native events provided by eamlopnocessor. Additional events may
be derived from one or more native events (if the procesgopats their simultaneous measure-
ment) and imposed counter time-sharing/multiplexing maywidle a means for approximating the
measurement of multiple counters within a single prograeceion. Although these approaches
address the goal of acquiring a richer set of measurememtparticular experiment, it is notable
that there is corresponding additional complexity whicmpticates interpretation. There may also
be ambiguities in the definitions of events (such as whetbecdative instructions are included in
event counts or not) which must also be taken into accoumgltineir analysis.

Interpretation and analysis of performance counters rasfibre been hindered, limited to a very
small subset of the potentially usable events, and oftenifspéo particular processor platforms.
One goal of our current work has been to investigate the extan it is possible to incorporate a
wider range of counter metrics, both universal and plattspacific, and exploiting multiple mea-
surement experiments where necessary, for holistic asalygxecution performance.

1.1. Initial KOJAK approach

Previous developments of the KOJAK performance measurearghanalysis environment for
parallel programs, which supports many current computstesys, offer a suitable vehicle for pur-
suing this investigation. KOJAK provides semi-automatisttumentation of user applications and
automatic analysis of performance problems arising froefficient usage of parallel programming

'Download available fronht t p: / / www. f z-j uel i ch. de/ zan koj ak/



188

interfaces (such as MPI and OpenMP) [1,2]. Performancel@nubare classified by type and quan-
tified by severity, for investigation via an interactive twser (CUBE) which presents an integrated,
hierarchical view of performance behaviour, call path aratess/thread of execution.

A basic infrastructure also exists in KOJAK for measuringm@r events and their incorporation
into hierarchical analyses alongside communication amgtgpnisation metrics. One approach
extended KOJAK’s portable execution tracing to directlglide counter measurements and in-
corporate them in its various analyses [3]. Another incoafes hardware counter analysis from
separate platform-specific profiling tools with KOJAK’s owrecution trace analysis [4]. In both
cases, counter measurements/metrics are related to pre@gra system entities (i.e., the call tree,
processes and threads) and quantified. While the secondaggbpinas a limited separated hierarchy
of raw counter measurements, the first was an initial attém@ssess corresponding time penalties
and integrate these with KOJAK'’s directly-measured tinasdd performance properties.

Quantifying time-penalties for event counts was promisimgvever, further investigation with
additional metrics highlit the limitations of the approacWhere KOJAK identified a metric tu-
ple (call-path and thread) with an occurrence rate aboveslmwba certain threshold, it derived a
performance penalty as the entire measured execution fitiaotuple; in effect it used an upper
bound on the actual penalty, for want of a better approximmatComparing the derived performance
penalties with those directly measured from cycles-bat@lceunters (on platforms which support
them, e.g., UltraSPARC [9]), showed that while they werealdip representative, they were also
significantly exaggerated. In this case, the measured fpemabuld have been used to adjust the
performance penalty derivations to improve their accyrdmyugh the derivations would inevitably
be platform-specific (and it would generally not be possiblguantify the actual penalties). Fur-
thermore, the performance of a tuple is ultimately due totiplel causes, manifesting in multiple
counter metrics and also non-counter metrics (e.g., congation and synchronisation times), in
complex dynamic relationships, such that it is not posdibi@ccurately determine the time penalty
related to a single count measurement. Although the exatigerof particular performance aspects
can be broadly in-line with their actual severity, and ashduenefit analysis, in practice it was found
to have a detrimental impact on the analysis as a whole, lyystdmpromising its integrity.

2. Refined design for hardware counter measurement and anadys

A more robust foundation for incorporating event countsrirbardware counters into perfor-
mance experiments is to integrate them in separate meararchies presented alongside that for
measured time metrics. This is particularly the case wheyetanumbers of counters are measured
for analysis. Since it is rare that processors support sanabus measurement of all of the coun-
ters of interest, multiple measurements with subsets afitess may be required, with these partial
experiments integrated into a single comprehensive aisaljssistance can also be provided with
specification of appropriate sets of counters for measungraad multiple presentation hierarchies
may be valuable during analysis.

These various aspects have been addressed to refine KOJAKrstgr counter-based analysis
within the existing framework of MPI and OpenMP communicatand synchronisation analysis.

2.1. Structured analysis via metric hierarchies

Defining hierarchies of related counter events both pravateimproved structure for navigating
and interpreting the relationships between events (sudat@sreferences encompassing loads and
stores, or hits and misses at different levels of cache amdang and assessing their significance
(e.g., cache misses as a proportion of references). In sages gt can be clear that a single natural
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hierarchy of related events can be defined. Generally, hervavset of event data may profitably
be structured in several hierarchies, where it may not beiplesto determine in advance which
is most valuable: indeed, the various hierarchies are aftenplementary rather than redundant.
Furthermore, while part of a hierarchy may be platform/pssor-independent, it is desirable to
be able to include available platform/processor-specifenes for a more complete and detailed
understanding of execution performance, which itself mail e platform-specific.

For example, consider the hierarchy of caches used to irephe/performance of data accesses
from memory. A general categorisation of data (and insibng¢taccesses uniquely associates them
with the level of cache or system memory from which they amioled, i.e., where they hit:

DATA_ACCESS = DATA HIT_L1$ + DATA HIT_L2$ + ... + DATA H T_MEM

It can also be inferred that misses occurred in lower levietaiohe. Data accesses to each level can
be reads/loads or writes/stores, offering the next geikrasion:

DATA H T_L1$ = DATA LOAD FROM L1$ + DATA STORE_ I NTO L1$

It is worth noting that this general hierarchy, while applyto a variety of processors and systems,
contains elements which will not apply on all: e.g., IBM p6#®OWERA4-11 [7] has three levels of
cache whereas Opteron [8] and UltraSPARC-11I/1V [9] onlywaa&wo, and while the latter can regis-
ter stores into each level of cache (and memory) the formigregisters stores into L1 cache which
write-through to the rest. This is readily handled with tlegmsed structuring, as the inapplicable
L3 cache measurements can be treated as zero-valuedqu®alent to a non-functional L3 cache).

Provision of hardware counters also varies considerablypriogessor/system. Opteron has a
counter to measure data accesses directly, so an Optegoifispefinition can be used,

DATA_ACCESS = DC_ACCESS # Opteron

however, data accesses must be derived fronsghosition of other events on UltraSPARC-III/IV
and POWERA4-I11, and such composed metrics are fundamenthkttierarchical structure. L1
cache read and write hits can not be measured directly by itheeSPARC or POWER4-II counters,
however, they can be determined bgamputation? with measured counters:

DATA LOAD FROM L1$ = DC rd - DC rd_nmiss # US-3/4
DATA STORE INTO L1$ = DC wr - DC w_niss # US-3/4
DATA LOAD FROM L1$ = PM LD REF L1 - PM LD M SS L1 # PONERA4
DATA STORE_INTO L1$ = PM ST REF L1 - PM ST _MSS L1 # PONERA4

Opteron doesn’t provide counters which can distinguish ad¢he read and write hits, or even
allow their combination to be measured directly, howeves tan also be computed instead:

DATA HI T_L1$ = DC_ACCESS - DC_M SS # Opteron

While such computed metrics provide a valuable means fopteting the general hierarchies,
when compositions are not available, they don’t provideltbeefit of extending the hierarchies in
the way that composed metrics naturally do. For example,ldat hits from L2 cache are composed
from multiple native events on Opteron and POWERA4-II, retipely:

DATA _LOAD FROM L2$
DATA _LOAD FROM L2$

DC L2 _REFILL_O + DC_L2_REFILL_E + DC L2 _REFILL_S # Opt
PM_DATA_FROM L2

PM DATA_FROM L25 MOD + PM DATA FROM L25_ SHR
PM_DATA_FROM L275_MOD + PM DATA FROM L275_SHR # POWER4

+ + 10

2The termcomputation is defined as a general calculation which can include suiddrec(and potentially other arith-
metic operations), whereasmposition is defined to be strictly additive.
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Although these compositions have quite different constitumeasured counters, they naturally
extend the general hierarchy with additional platformesfiedetail, which can offer further insight
for performance tuning on the respective platforms. Whaehe(dual-core) POWERA4-II processor
has its own local L2 cache, it shares this with the other m®ea@es on its multi-chip module (MCM,
L25) and the processors on the other MCMs in its node (L275)f ehich are faster than accessing
L3 cache (which is similarly shared), so local versus remh@teache accesses impact performance.

This process of deriving hierarchies of new metrics from positions and computations of avail-
able measurements is able to create quite comprehensiceustd relationships for data, instruction
and TLB accesses (and associated hits and misses), witheaagstructure extended by additional
platform-specific components. Metrics which are not agtilie, or can’t be derived from available
measurements can be omitted. When a composition is onlialhagatisfied by available measure-
ments, it can still be valuable to retain it, but it should Ieady indicated as incomplete, such as
including ‘~’ in its label. (Where a particular set of measurements helsuch partially satisfied
derivations, these may subsequently be completed whenigqrgs are combined.) Partial com-
putations can have negative values or values in excess iofpdaent, such that it's generally not
prudent to retain them: in most cases, measurements carobpegt such that those required for
computed metrics are kept in the same group to avoid this.

Similar structuring can also be applied to the types of utdion processed by various functional
units and cycles-based counters for related busy/stalldiageriods. In these cases, more of the
measurements are platform-specific and while it’s stillgige to have a hierarchical relationship,
there are typically more ‘gaps’ corresponding to unmedsdafanaccounted events. There can also
be considerable ambiguity regarding particular eventsthactounters which measure them. For
example, since storing floating-point data is typically edny the floating-point unit (FPU), this is
often naturally accounted as a floating-point event: whaesi$ not desired, the corresponding event
measurement can be relocated to another category, swEMaRY. Often, however, it may not be
possible to distinguish the different kinds of events cedriy particular functional units. There
may also be inconsistency between counting instructigegei$ and those which actually complete.

While a general classification and hierarchy of a varietyrotpssor events can be developed, it
is ultimately necessary to refer to the respective procassmuals (and associated documentation
of native counter events) to assess their significance [7-9]

2.2. Flexible metric specification and customisation

Metric structuring which specifies (presumed) relatiopshietween events provides a mecha-
nism for helping to navigate and understand those reldtipas While generic hierarchies such as
those described offer one particular structuring, altéraar complementary structures may also be
defined and preferable in some cases. Measured events whichhiierarchy must simply be listed
separately (as is the case when no relationships are asgxbaidéh a metric).

A flexible approach is therefore taken, which provides thexgation of metric relationships in
a text file which is read to configure and structure the ansilyspecifications shown in the previous
subsection are extracts from such a file. The default spatidit can then be overridden to provide
alternative analyses when desired. A specification file affeys convenience during measurement
collection, providing definitions of groups of counters walnican usefully be collected in the same
measurement, i.e., taking into account restrictions omtimaber and types of events that can be
counted simultaneously. Although it is possible to use PAfekset nhames for counters to create
notionally-portable groups, it is preferable to specifatfilrm-specific groups directly in terms of
native events, since many of the relevant native eventsmaeerresponding PAPI preset definition
and combination of presets is still subject to the sameagiafspecific limitations.
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2.3. Holistic analysis via integration of multiple experinents

Analysis of hardware counter measurements, and metricadems therefrom, can take two broad
approaches. The first sticks strictly to what can be relialetermined from a single measurement
experiment (as is the case for HPM [7] and Appreritid®]), and as such is significantly limited by
the flexibility and capabilities of the actual monitoring ti&are provided by the processor. Several,
separate experiments with different sets of measuremeaysoe considered, with the implicit un-
derstanding that the execution may be quite different ilhease. An alternative uses time-sharing
or multiplexing to automatically change the events meaksthieoughout the duration of an experi-
ment, and extrapolate from these partial measurementatgeriset of approximate measurements.
Whereas this has the convenience and benefit of handlinggée smecution, it can be compro-
mised by variations in behaviour within the execution (thlothese may be small if the execution is
sufficiently regular and long with respect to the time-shiguperiod).

Requiring multiple executions is a significant overheadyéner, it also provides an opportunity to
consider possible run-to-run variations and incorpotaeatin the analysis. While past results are no
guarantee of future performance, they can help indicaté rahge of performance can reasonably be
expected. This is particularly useful for deterministipbgations when the hardware configuration
is unchanged and executions occur in a relatively contiqtiedicated) environment.

KOJAK’s CUBE algebra operators [1] allow experiments to benbined to produce the mean
of multiple related experiments or to aggregate experimeahtaining different hardware counter
metrics. Combining both approaches can be used to redue®um variations and extend the
metric analyses to the set of experiments. Furthermoreditfexence of two experiments can be
calculated to examine variations between them.

The existing merge utility produced an experiment with theno of metrics, call-paths and pro-
cess/thread measurements in input experiments. This wesd®d to integrate experiments contain-
ing identical call-path and process/thread trees, buewifit sets of measured and derived hardware
counter metrics. Measurements replicated in more thanxyezienent are averaged, however, mea-
surements contributing to metric compositions, and whiehamly partially fulfilled in individual
experiments, are accumulated to allow the compositions tmimpleted. Where available, measured
metric values are also retained in preference to partialigmuted or accumulated values.

3. Results

To demonstrate these new KOJAK capabilities, three congm&tie sets of experiments consist-
ing of complementary groups of hardware counter measuresmeaare collected on an IBM Regatta
cluster, Cray XD1 cluster and Sun Fire E25000, using the AB®IE sPPM v1.1 benchmark [11].
This application uses a simplified piecewise parabolic weifiPPM) to solve a 3D gas dynamic
problem on a uniform Cartesian mesh. It is written mostlyantfan 77 and can simultaneously ex-
ploit multithreading for shared-memory parallelism andnéin decomposition with message pass-
ing for distributed parallelism: the double-precision +@it) hybrid parallelisation tested used 32
MPI processes each with 2 OpenMP threads. The processespasittoned2 x 4 x 4 in the
X xY xZ dimensions, a configuration chosen to offer a reasonabseatomparison between the
experiments on the different systems, rather than beingaged for any particular system.

Preparation of the instrumented application executablesdwone by prependirignst-pomp to
the commands that invoke the compiler and linker. This russwce preprocessor to automati-
cally instrument the application’s 12 OpenMP parallel D©@gs, 41 explicit barriers and various
additional single and master blocks, and link instrumem®&tPl and POMP libraries along with
the PAPI library for hardware counter measurements. Toigeoadditional context for the analysis,
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while avoiding overheads associated with automaticayriimmenting the entry and exits of every
application routine, the program’s main phases and the &efmes using MPI and OpenMP had
also previously been manually annotated with POMP registrumentation directives [5]. When
the instrumented applications are executed in the usuaibiagand with optional hardware counter
measurements configured through an environment varidb&estrumented events are recorded in
per-thread trace buffers which are subsequently mergedingle traces for each execution.

The experiments used two p690+ nodes of an IBM Regatta cl(rstening AlX 5.2 and con-
nected via HPS) consisting of 4 MCMs with 4 dual-core POWHERtocessors, 32 nodes of a Cray
XD1 cluster (running GNU/Linux 2.6 and connected via Rapi@# network) each with two AMD
Opteron 248 processors, and a Sun Fire E25000 (runningi$Okawith dual-core UltraSPARC-
IV processors. On the IBM system, 6 experiments were c@te@vith up to 8 counters in each),
whereas 10 experiments (each with 4 counters) on the XD1 &mkgderiments (each with 2 coun-
ters) on the E25000 were required to acquire a comparaldedédetail. These sets of experiments
were subsequently incorporated into a single compositlysina@xperiment for each platform.

3.1. Comparative experiment analysis

For this analysis, execution times (and other absolute uneasents) are less important than re-
lationships between measurements, whether within a setpafrienents or between sets: Figure 1
shows a view of the analysis of the XD1 and Regatta experignedtie to space limitations, the
E25000 experiment is not included in this abbreviated aisilyor additional analyses see [12].

Wall-clock execution time of 180s (163s in thenhyd computational kernel) on the XD1 com-
pares with 280s (241s irunhyd) on the Regatta for each experiment. Parallel initialssatver-
heads (in thénit phase) amount to 1.9% of execution time on the Regatta versés on the XD1,
with the balance attributed predominantly to thehyd computational kernel, within which the six
routines responsible for the hydrodynamics each accoumbtmhly equal shares of the total, and
each has good load balance over the 64 threads (32 procesdasth platforms.

The respective proportions of total execution time atteduo MPI are very similar — 1.7% on
XD1 vs. 2.2% on Regatta — and investigating further, thisegponds primarily to point-to-point
communication, with (the master threads of) every fourticpss responsible for contributing twice
as much as the others. TIMPI_Allreduce in glblmax at the end of the main computation loop
in runhyd can also be found to require a significantly higher collectiait time on the Regatta,
totalling 127s (0.77%) versus 15s (0.15%) on the XD1.

OpenMP runtime costs on the XD1 are attributed 3.3% of totatetion time, versus 0.9% on
Regatta, further categorised as explicit barrier syndsaetion wait time in each case. Whereas this
is mostly attributed to the six hydrodynamics routines anXid1, with only 4% in the barrier at the
end of the computational loop, on the Regatta that final &aisiattributed 82%.

Some potentially important differences in the MPI and Opéndédmmunication and synchroni-
sation can therefore be seen in the XD1 and Regatta expasmewever, they also demonstrate
broadly similar parallelisation efficiency. Proceedingdied the parallel execution, communication
and synchronisation times, additional performance netare provided by and derived from hard-
ware counters measurements. While subsets of the cousedmetrics are available in individual
experiments, in combination they offer comprehensivagimsinto the processors’ execution.

Comparing the proportion of mispredicted brancheRANCH_M SP), while relatively small in
both cases, at 0.58% of all instructions (7.0% of branches) considerably larger for Regatta
than the 0.08% (1.5%) of Opteron, and depending on the selaxsll-path is also seen to vary
considerably by thread, with some threads notably moretaifethan the others. The significance
can be investigated further by examining the respectivatsrs which measure branch stall cycles.
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CUBE: Opteron_combo.cube
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Figure 1. Two KOJAK analyses of combined hybrid OpenMP/MPP® benchmark executions on
equisized Cray XD1 Opteron and IBM Regatta p690+ POWERA4tisters (in front and below).
Performance metrics (left pane) and their distributiorralie program’s call tree (middle pane) and
process/thread tree (right pane) are presented hieratighidMetric values have been expressed as
percentage of total execution time or root counter value,sfrown with squares coloured according
to the scale at the bottom. Selectively expanding or caitgpeodes in each of the three linked
trees allows analysis at different levels of granularityheTcurrently selected metric for branch
misprediction rates (with its derivation visible in the pop) and the call-tree path ending with the
parallel loop in one of the six key hydrodynamics routines sinown boxed (and corresponding
details provided in the area at the bottom). Important pses/threads and other call-paths are
shown underlined and appear darkest in the lower rightalifitocess topology display. Each set of
experiments has identical call-tree and system tree loieies, and only performance metrics which
are platform-specific counters differ, yet the broad sintidacilitates comparisons between them.
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Both processors are seen to have 97% of data accesses hihel, bawever, it is the increasingly
costly accesses that miss L1 cache and must be satisfied fgirarltaches and memory that are
most significant and warrant further investigation. On p68@ese are seen to be predominantly
from local L2 cache®M DATA_FROM L2), with only 0.14% requiring to come from memory. With
its smaller, two-level caches, Opteron must load twice asm(0.27%) of its data from memory.

4. Conclusion

Refinement of KOJAK’s hardware-counter-based analyssretl much of the existing measure-
ment, recording and analysis infrastructure, with the ipocation of functionality for more conve-
nient counter-metric measurement specification, additioretrics derivable from measured metrics,
and customisable structured metric hierarchies. Furtbernthe algebra for integrating multiple
experiments was extended to consolidate experimentsinorggsub)sets of counter-based metrics
and produce unified experiments with all of the availablesnead and derivable metrics.

Unified experiments, containing communication and synaisation metrics combined with a
rich set of counter metrics, support comprehensive holmtialysis of parallel programs: execu-
tion inefficiencies may be isolated to particular procesgor threads) and their various functional
units, or found to relate to the use of shared and distribatethes and memory within modern
computer systems. The portable CUBE format of analysesallsw fuller comparison between
platforms, where architectural differences may be sigaific These capabilities contrast those of
existing tools which can also offer detailed platform-sfie@nalysis when appropriately directed
by knowledgable users, but without a holistic overview aadtext, or multi-platform comparison.
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