000048298 001__ 48298
000048298 005__ 20240711114103.0
000048298 017__ $$aThis version is available at the following URL: http://dx.doi.org/10.1088/0029-5515/45/11/022
000048298 0247_ $$2DOI$$a10.1088/0029-5515/45/11/022
000048298 0247_ $$2WOS$$aWOS:000233679100024
000048298 0247_ $$2Handle$$a2128/1892
000048298 037__ $$aPreJuSER-48298
000048298 041__ $$aeng
000048298 082__ $$a530
000048298 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000048298 084__ $$2WoS$$aPhysics, Nuclear
000048298 1001_ $$0P:(DE-HGF)0$$aMonier-Garbet, P.$$b0
000048298 245__ $$aImpurity seeded ELMy H-modes in JET with high density and reduced heat load
000048298 260__ $$aVienna$$bIAEA$$c2005
000048298 300__ $$a1404 - 1410
000048298 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000048298 3367_ $$2DataCite$$aOutput Types/Journal article
000048298 3367_ $$00$$2EndNote$$aJournal Article
000048298 3367_ $$2BibTeX$$aARTICLE
000048298 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000048298 3367_ $$2DRIVER$$aarticle
000048298 440_0 $$04641$$aNuclear Fusion$$v45$$x0029-5515
000048298 500__ $$aRecord converted from VDB: 12.11.2012
000048298 520__ $$aExperiments performed at JET during the past two years show that, in high triangularity H-mode plasmas with I-p = 2.5 MA, n(e)/n(Gr) approximate to 1.0, it is possible to radiate separately up to approximate to 40% of the total injected power on closed flux surfaces in the pedestal region (argon seeding) and up to approximate to 50% of the injected power in the divertor region (nitrogen seeding), while maintaining the confinement improvement factor at the value required for ITER, H98(y, 2) 1.0. The total radiated power fraction achieved in both cases (65-70%) is close to that required for ITER. However, Type I ELMS observed with impurity seeding have the same characteristics as that observed in reference pulses without seeding: decreasing plasma energy loss per ELM with increasing pedestal collisionality. One has to reach the Type III ELM regime to decrease the transient heat load to the divertor to acceptable values for ITER, although at the expense of confinement. The feasibility of an integrated scenario with Type-III ELMS, and q(95) = 2.6 to compensate for the low H factor, has been demonstrated on JET. This scenario would meet ITER requirements at 17 MA provided that the IPB98 scaling for energy content is accurate enough, and provided that a lower dilution is obtained when operating at higher absolute electron density.
000048298 536__ $$0G:(DE-Juel1)FUEK250$$2G:(DE-HGF)$$aKernfusion und Plasmaforschung$$cE05$$x0
000048298 588__ $$aDataset connected to Web of Science
000048298 650_7 $$2WoSType$$aJ
000048298 7001_ $$0P:(DE-HGF)0$$aAndrew, Ph.$$b1
000048298 7001_ $$0P:(DE-Juel1)VDB3265$$aRapp, J.$$b2$$uFZJ
000048298 7001_ $$0P:(DE-HGF)0$$aBelo, P.$$b3
000048298 7001_ $$0P:(DE-HGF)0$$aBonheure, G.$$b4
000048298 7001_ $$0P:(DE-HGF)0$$aCorre, Y.$$b5
000048298 7001_ $$0P:(DE-HGF)0$$aCrombe, K.$$b6
000048298 7001_ $$0P:(DE-HGF)0$$aDumortier, P.$$b7
000048298 7001_ $$0P:(DE-HGF)0$$aEich, T.$$b8
000048298 7001_ $$0P:(DE-HGF)0$$aFelton, R.$$b9
000048298 7001_ $$0P:(DE-HGF)0$$aHarling, J.$$b10
000048298 7001_ $$0P:(DE-HGF)0$$aHogan, J.$$b11
000048298 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b12$$uFZJ
000048298 7001_ $$0P:(DE-HGF)0$$aJachmich, S.$$b13
000048298 7001_ $$0P:(DE-HGF)0$$aJoffrin, E.$$b14
000048298 7001_ $$0P:(DE-Juel1)130066$$aKoslowski, H. R.$$b15$$uFZJ
000048298 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b16$$uFZJ
000048298 7001_ $$0P:(DE-HGF)0$$aMaddison, G.$$b17
000048298 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b18
000048298 7001_ $$0P:(DE-HGF)0$$aMessiaen, A.$$b19
000048298 7001_ $$0P:(DE-HGF)0$$aNave, M. F.$$b20
000048298 7001_ $$0P:(DE-HGF)0$$aOngena, J.$$b21
000048298 7001_ $$0P:(DE-HGF)0$$aParail, V.$$b22
000048298 7001_ $$0P:(DE-HGF)0$$aPuiatti, M. E.$$b23
000048298 7001_ $$0P:(DE-Juel1)VDB3265$$aRapp, J.$$b24$$uFZJ
000048298 7001_ $$0P:(DE-HGF)0$$aSartori, R.$$b25
000048298 7001_ $$0P:(DE-HGF)0$$aStober, J.$$b26
000048298 7001_ $$0P:(DE-Juel1)5089$$aTokar, M. Z.$$b27$$uFZJ
000048298 7001_ $$0P:(DE-HGF)0$$aUnterberg, B.$$b28
000048298 7001_ $$0P:(DE-HGF)0$$aValisa, M.$$b29
000048298 7001_ $$0P:(DE-HGF)0$$aVoitsekhovitch, I.$$b30
000048298 7001_ $$0P:(DE-HGF)0$$avon Hellermann, M.$$b31
000048298 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/0029-5515/45/11/022$$gVol. 45, p. 1404 - 1410$$p1404 - 1410$$q45<1404 - 1410$$tNuclear fusion$$v45$$x0029-5515$$y2005
000048298 8567_ $$uhttp://hdl.handle.net/2128/1892$$uhttp://dx.doi.org/10.1088/0029-5515/45/11/022
000048298 8564_ $$uhttps://juser.fz-juelich.de/record/48298/files/76011.pdf$$yOpenAccess
000048298 8564_ $$uhttps://juser.fz-juelich.de/record/48298/files/76011.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000048298 8564_ $$uhttps://juser.fz-juelich.de/record/48298/files/76011.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000048298 8564_ $$uhttps://juser.fz-juelich.de/record/48298/files/76011.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000048298 909CO $$ooai:juser.fz-juelich.de:48298$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000048298 9131_ $$0G:(DE-Juel1)FUEK250$$bEnergie$$kE05$$lKernfusion und Plasmaforschung$$vKernfusion und Plasmaforschung$$x0
000048298 9141_ $$y2005
000048298 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000048298 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000048298 9201_ $$0I:(DE-Juel1)VDB181$$d31.12.2006$$gIPP$$kIPP$$lInstitut für Plasmaphysik$$x0
000048298 970__ $$aVDB:(DE-Juel1)76011
000048298 9801_ $$aFullTexts
000048298 980__ $$aVDB
000048298 980__ $$aJUWEL
000048298 980__ $$aConvertedRecord
000048298 980__ $$ajournal
000048298 980__ $$aI:(DE-Juel1)IEK-4-20101013
000048298 980__ $$aUNRESTRICTED
000048298 980__ $$aFullTexts
000048298 981__ $$aI:(DE-Juel1)IFN-1-20101013
000048298 981__ $$aI:(DE-Juel1)IEK-4-20101013