000004844 001__ 4844
000004844 005__ 20240712100955.0
000004844 0247_ $$2WOS$$aWOS:000259221400019
000004844 0247_ $$2Handle$$a2128/10139
000004844 037__ $$aPreJuSER-4844
000004844 041__ $$aeng
000004844 082__ $$a550
000004844 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000004844 1001_ $$0P:(DE-HGF)0$$aShindell, D.T.$$b0
000004844 245__ $$aA multi-model assessment of pollution transport to the Arctic
000004844 260__ $$aKatlenburg-Lindau$$bEGU$$c2008
000004844 300__ $$a5353 - 5372
000004844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004844 3367_ $$2DataCite$$aOutput Types/Journal article
000004844 3367_ $$00$$2EndNote$$aJournal Article
000004844 3367_ $$2BibTeX$$aARTICLE
000004844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004844 3367_ $$2DRIVER$$aarticle
000004844 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v8$$x1680-7316
000004844 500__ $$aWe thank the NASA Atmospheric Chemistry Modeling and Analysis Program for support, and D. Henze for comments. MGS and KJP were funded by the UK Defra under contract AQ0409, and were also supported by the Joint Defra and MoD programme, (Defra) GA01 101 (MoD) CBC/2B/0417-Annex C5. This work was perfomed under the umbrella of the Task Force - Hemispheric Transport of Air Pollution (www.htap.org).
000004844 520__ $$aWe examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe. East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and arc dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute similar to 40% of total BC deposition to Greenland, with similar to 20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing, (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O-3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions. and oxidation are comparable for European and North American sources. At higher levels. model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.
000004844 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000004844 588__ $$aDataset connected to Web of Science
000004844 650_7 $$2WoSType$$aJ
000004844 7001_ $$0P:(DE-HGF)0$$aTeich, H.$$b1
000004844 7001_ $$0P:(DE-HGF)0$$aChin, M.$$b2
000004844 7001_ $$0P:(DE-HGF)0$$aDentener, F.$$b3
000004844 7001_ $$0P:(DE-HGF)0$$aDoherty, R.M.$$b4
000004844 7001_ $$0P:(DE-HGF)0$$aFaluvegi, G.$$b5
000004844 7001_ $$0P:(DE-HGF)0$$aFiore, A.M.$$b6
000004844 7001_ $$0P:(DE-HGF)0$$aHess, P.$$b7
000004844 7001_ $$0P:(DE-HGF)0$$aMacKenzie, I.A.$$b8
000004844 7001_ $$0P:(DE-HGF)0$$aSanderson, M.G.$$b9
000004844 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M. G.$$b10$$uFZJ
000004844 7001_ $$0P:(DE-HGF)0$$aSchulz, M.$$b11
000004844 7001_ $$0P:(DE-HGF)0$$aStevenson, D.S.$$b12
000004844 7001_ $$0P:(DE-HGF)0$$aTextor, C.$$b13
000004844 7001_ $$0P:(DE-HGF)0$$aWild, O.$$b14
000004844 7001_ $$0P:(DE-HGF)0$$aBergmann, D.J.$$b15
000004844 7001_ $$0P:(DE-HGF)0$$aBian, H.$$b16
000004844 7001_ $$0P:(DE-HGF)0$$aCuvelier, C.$$b17
000004844 7001_ $$0P:(DE-HGF)0$$aDuncan, B. N.$$b18
000004844 7001_ $$0P:(DE-HGF)0$$aFolberth, G.$$b19
000004844 7001_ $$0P:(DE-HGF)0$$aHorowitz, L.W.$$b20
000004844 7001_ $$0P:(DE-HGF)0$$aJonson, J.$$b21
000004844 7001_ $$0P:(DE-HGF)0$$aKaminski, J.W.$$b22
000004844 7001_ $$0P:(DE-HGF)0$$aMarmer, E.$$b23
000004844 7001_ $$0P:(DE-HGF)0$$aPark, R.$$b24
000004844 7001_ $$0P:(DE-HGF)0$$aPringle, K.J.$$b25
000004844 7001_ $$0P:(DE-Juel1)VDB10218$$aSchroeder, S.$$b26$$uFZJ
000004844 7001_ $$0P:(DE-HGF)0$$aSzopa, S.$$b27
000004844 7001_ $$0P:(DE-HGF)0$$aTakemura, T.$$b28
000004844 7001_ $$0P:(DE-HGF)0$$aZeng, G.$$b29
000004844 7001_ $$0P:(DE-HGF)0$$aKeating, T.J.$$b30
000004844 7001_ $$0P:(DE-HGF)0$$aZuber, A.$$b31
000004844 773__ $$0PERI:(DE-600)2069847-1$$gVol. 8, p. 5353 - 5372$$p5353 - 5372$$q8<5353 - 5372$$tAtmospheric chemistry and physics$$v8$$x1680-7316$$y2008
000004844 8564_ $$uhttps://juser.fz-juelich.de/record/4844/files/acp-8-5353-2008.pdf$$yOpenAccess
000004844 8564_ $$uhttps://juser.fz-juelich.de/record/4844/files/acp-8-5353-2008.gif?subformat=icon$$xicon$$yOpenAccess
000004844 8564_ $$uhttps://juser.fz-juelich.de/record/4844/files/acp-8-5353-2008.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000004844 8564_ $$uhttps://juser.fz-juelich.de/record/4844/files/acp-8-5353-2008.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000004844 8564_ $$uhttps://juser.fz-juelich.de/record/4844/files/acp-8-5353-2008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000004844 909CO $$ooai:juser.fz-juelich.de:4844$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000004844 9141_ $$aNachtrag$$y2008
000004844 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000004844 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000004844 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000004844 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000004844 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000004844 970__ $$aVDB:(DE-Juel1)112080
000004844 9801_ $$aUNRESTRICTED
000004844 9801_ $$aFullTexts
000004844 980__ $$aVDB
000004844 980__ $$aConvertedRecord
000004844 980__ $$ajournal
000004844 980__ $$aI:(DE-Juel1)IEK-8-20101013
000004844 980__ $$aUNRESTRICTED
000004844 981__ $$aI:(DE-Juel1)ICE-3-20101013
000004844 981__ $$aI:(DE-Juel1)IEK-8-20101013