001     48461
005     20200402210029.0
024 7 _ |2 DOI
|a 10.1016/j.msec.2005.07.004
024 7 _ |2 WOS
|a WOS:000233784800037
037 _ _ |a PreJuSER-48461
041 _ _ |a eng
082 _ _ |a 600
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Dieluweit, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5493
245 _ _ |a Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition
260 _ _ |a Amsterdam
|b Elsevier
|c 2005
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Materials Science and Engineering C
|x 0928-4931
|0 8466
|y 5
|v 25
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation. (c) 2005 Published by Elsevier B.V
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a nanotechnology
653 2 0 |2 Author
|a S-layers
653 2 0 |2 Author
|a electrochemical deposition
653 2 0 |2 Author
|a immobilization
700 1 _ |a Pum, D.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Sleytr, U. B.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB57663
700 1 _ |a Kautek, W.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB57664
773 _ _ |a 10.1016/j.msec.2005.07.004
|g Vol. 25
|q 25
|0 PERI:(DE-600)2012160-X
|t Materials science and engineering / C
|v 25
|y 2005
|x 0928-4931
856 7 _ |u http://dx.doi.org/10.1016/j.msec.2005.07.004
909 C O |o oai:juser.fz-juelich.de:48461
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-4
|l Institut für biologisch-anorganische Grenzflächen
|d 31.12.2001
|g ISG
|0 I:(DE-Juel1)VDB44
|x 0
970 _ _ |a VDB:(DE-Juel1)76211
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21