001     48496
005     20180210142251.0
024 7 _ |2 DOI
|a 10.1016/j.cam.2005.09.009
024 7 _ |2 WOS
|a WOS:000239746800007
024 7 _ |2 ISSN
|a 0377-0427
037 _ _ |a PreJuSER-48496
041 _ _ |a eng
082 _ _ |a 510
084 _ _ |2 WoS
|a Mathematics, Applied
100 1 _ |a Eitrich, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB23445
245 _ _ |a Efficient Optimization of Support Vector Machine Learning Parameters for Unbalanced Data Sets
260 _ _ |c 2006
|a Amsterdam [u.a.]
|b North-Holland
300 _ _ |a 425 - 436
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Computational and Applied Mathematics
|x 0377-0427
|0 15061
|y 2
|v 196
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Support vector machines are powerful kernel methods for classification and regression tasks. If trained optimally, they produce excellent separating hyperplanes. The quality of the training, however, depends not only on the given training data but also on additional learning parameters, which are difficult to adjust, in particular for unbalanced datasets. Traditionally, grid search techniques have been used for determining suitable values for these parameters. In this paper, we propose an automated approach to adjusting the learning parameters using a derivative-free numerical optimizer. To make the optimization process more efficient, a new sensitive quality measure is introduced. Numerical tests with a well-known dataset show that our approach can produce support vector machines that are very well tuned to their classification tasks. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a support vector machine
653 2 0 |2 Author
|a parameter tuning
653 2 0 |2 Author
|a unbalanced datasets
653 2 0 |2 Author
|a derivative-free optimization
700 1 _ |a Lang, B.
|b 1
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)1468806-2
|a 10.1016/j.cam.2005.09.009
|g Vol. 196, p. 425 - 436
|p 425 - 436
|q 196<425 - 436
|t Journal of Computational and Applied Mathematics
|v 196
|x 0377-0427
|y 2006
856 7 _ |u http://dx.doi.org/10.1016/j.cam.2005.09.009
909 C O |o oai:juser.fz-juelich.de:48496
|p VDB
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2006
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 0
970 _ _ |a VDB:(DE-Juel1)76250
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21