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The liquid crystalline behavior of a two dimensional (2D) model of hard needles bent into a “zigzag
shape” is studied. This model, originally designed to study two dimensional chiral segregation, also
shows liquid crystalline behavior and has some anomalous features which are contrasted in relation
to the following: (i) Most of the microscopical models used to study liquid crystals have a symmetry
axis that coincides with a molecular axis; (ii) in three-dimensions, chiral molecules can form
cholesteric instead of nematic phases; (iii) the smectic phase is usually found when attractions are
present or at least when the molecules have finite volume. Despite the fact that the present 2D model
does not have any of these characteristics, numerical evidence is found for the occurrence of
nematic and smectic phases. Since these molecules are athermal, infinitely repulsive, and
infinitesimally thin, the liquid crystalline characteristics are attributed to excluded volume effects.
To determine the mesophases of the model, both nematic and smectic order parameters as well as

distribution functions are computed. © 2006 American Institute of Physics.
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I. INTRODUCTION

It is well known that dimensionality greatly affects the
nature of the phase diagram of statistical-mechanical sys-
tems. Before results are discussed some differences between
two and three dimensional liquid crystalline phase behavior
are mentioned. In this respect the two-dimensional (2D) sys-
tem studied here, the bent hard needles model,1 is helpful for
illustrating some of these differences. In the first place, some
characteristics of the model are mentioned which will disap-
pear if the model is brought to three dimensions (3Ds), and
which consequently would change some phase properties.
Some of the differences are discussed regarding phase prop-
erties between the present model and those of other compa-
rable models.

The model studied here was originally designed for the
investigation of 2D chiral segregation1 and shows the feature
that when considered in three dimensional space, i.e., three
translational and rotational degrees of freedom, the chiral
features disappear. On the other hand, in 3D the molecules
can generate solids of revolution with a symmetry axis, a
situation that would be impossible when embedded in 2D
space. In the limiting case when the so called arm length
tends to zero, the bent hard needles transform into the hard
needles of Frenkel and Eppenga,2 the nematic phase, stable
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in three dimensions, develops only quasi-long ranged order.
In 3D, chiral molecules can generate cholesteric phases
while nonchiral ones produce nematics. Since in this paper a
2D model is considered, the chirality cannot induce choles-
teric phases, but instead the system can generate nematics.
Also, the phase behavior of this model displays important
differences when compared to those of other well studied
models. For example, it allows for the occurrence of smectic
phases which are not present in the 2D model of hard need-
less studied by Frenkel and Eppenga.2

In the literature, several studies of liquid crystalline me-
sophases can be found occurring in 3D models. With regards
to anisotropic continuous potentials, these models can be
classified into several categories, e.g., those which take into
account attractive and/or repulsive interactions between mol-
ecules, including van der Waals and electrostatic
interactions,” which produce a nontrivial temperature depen-
dence of properties in the system. Although complicated, the
usefulness of this kind of potentials is their ability to model
many different situations. Some examples are the Kihara
fluid model studied recently4 and the Gay-Berne potential
which has been widely studied and applied to different prob-
lems, as for example, adsorption near a graphite surface,”
chiral induction,6 ferroelectric nernatics,7 or discotics, qua-
drupolar, or biaxial liquid crystals.8 The Gay-Berne potential
has also been modified in order to study the effect of the
shape of the molecules on the type of smectic phases.

Likewise, the liquid-crystalline phases displayed by less
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FIG. 1. Scheme of the bent hard needle model. The length of the molecule
is defined as 2A+B=1, where A is called the arm and B the body. The
orientation of the arm with respect to the body is denoted by 6.

complex models have also been determined. This is the case
of models where interactions consider only infinite repul-
sions, such as hard ellipsoids and spherocylinders (see, e.g.,
the properties reported for these two models by Frenkel ef
al.”'). Within this group, the simplest 2D model is presum-
ably the hard needles model,? which has infinitely repulsive
interactions and molecules are infinitely thin, i.e., they have
no effective volume. Because of their extreme simplicity,
these models are useful to understand the relationship be-
tween the occurrence of equilibrium phases and very basic
molecular features. The model studied here can be classified
within this category.

In 1949 Onsager11 applied a mean-field-type theory to
study the isotropic to nematic symmetry breaking for hard
rods in 3D in the limit of divergent length to thickness ratio.
According to that formalism, Onsager has shown that the
existence of a long-ranged nematic phase is induced only by
excluded volume effects. In general, statistical-mechanical
studies for 3D liquid crystals have in common the relevant
role of the repulsive part of the intermolecular potential in
generating the orientational order present in the nematic
phase. However, this conclusion cannot be generalized in a
straightforward manner to the equivalent two dimensional
system. In particular, a theory of the Onsager type for
needles in 2D does not lead to accurate predictions for the
isotropic-nematic transition. Furthermore, the work of Fren-
kel and Eppenga2 provides important arguments that indicate
the absence of genuine long ranged order for hard needles in
2D.

In 1988 Frenkel er al.'® confirmed the existence of smec-
tic phases for 3D hard spherocylinders, so that, and contrary
to what was believed then, attractive interactions seem not to
be a necessary ingredient to stabilize these structures. Later
on, along the same lines, Vanakaras and Photinos'? studied a
hard core 3D model with molecules composed of three dif-
ferent segments that also gave rise to smectic phases. In con-
trast, for the model presented here, we mention that even
though the volume of a molecule is zero, the smectic phase
develops because of the existence of an excluded volume.

As expected, the appearance of different liquid crystal-
line phases in the present model depends on the packing
density and on the specific molecular shape, given by the
molecular length of the arm A and angle 6 (see Fig. 1 and
text below). Due to these geometric parameters, a more rich
map of mesophases is found compared to those obtained by
Frenkel and Eppenga2 for hard needles. Despite the simplic-
ity of the model, it should be stressed out that a relatively
complex phase map, with nematic and smectic phases is pro-
duced.
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The main goal of this work is to find the importance of
the particular features of the bent hard needles model for the
occurrence of liquid crystalline mesophases. Constant vol-
ume and constant pressure Monte Carlo simulations were
performed in order to draw a map for the mesophases of the
bent hard needles model. To determine the appearance of the
different phases both nematic S and smectic A, order pa-
rameters are calculated as well as characteristic distribution
functions to complement the conclusions.

The paper is organized as follows: The model and the
details of simulations are contained in Sec. II, results are
presented in Sec. III, and finally Sec. IV is dedicated to con-
clusions.

Il. HARD BENT NEEDLES MODEL AND SIMULATIONS
DETAILS

The two-dimensional model considered here was origi-
nally designed to study chiral segregation. It may be consid-
ered as a generalization of the hard-needle model initially
studied by Onsager11 and later on by Frenkel and Eppenga.2
More specifically, a molecule is constructed by bending each
side of a hard needle by an angle 6 and of length A. The
parameters A and 6 thereby completely define the model,
since the length of the body B of the molecule is taken such
that the total length of the molecule is 1 =2A +B. A schematic
of the molecule, explaining its relevant parameters is shown
in Fig. 1.

The molecules are infinitely thin and possess infinitely
hard bodies, so that interactions are due to their excluded
volume, depending on the molecular parameters A, B, and 6.
The intermolecular potential energy U; is given by

o, overlap
U ij= (1)
0, no overlap.

Under certain thermodynamic conditions the geometry
of the molecules allows the development of liquid crystalline
features.

Constant volume and constant pressure Monte Carlo
simulations using the Metropolis acceptance criterion, in the
present case, reduce to the rule of accepting all nonoverlap-
ping configurations. For all simulations standard two-
dimensional periodic boundary conditions were applied and
the molecular angle was fixed to #=90°. Taking into account
that 2A + B=1, the range of values allowed for the molecular
arm length is A € [0,0.5]." Simulations were carried out at
different densities, defined as p=N/ L2, where L is the simu-
lation box length.

For constant volume simulations the acceptance criterion
is reduced to a simple rule, i.e., a configuration is accepted if
there are no overlaps between pairs of molecules, since mol-
ecules exhibit an infinite hard core. Each trial configuration
is realized by choosing at random a molecule and randomly
deciding if it is translated or rotated. The maximum displace-
ment in the center-of-mass coordinates and rotation angle
was established by adjusting the acceptance ratio along the
simulation to approximately 30% of the trial moves. For con-
stant volume simulations the box was a perfect square of side
L. Several values of the arm length A were chosen and for
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TABLE 1. Parameters used for simulations; for each molecular arm A
€[0,0.5] we selected a series of densities; the number of particles was N
=1000.

Molecular arm A Density p

0.0625 5,17,9, 11, 13, 15, 17, 20, 25, 30, 35, 40
0.11 9, 10, 11, 12, 15, 20, 25, 30, 40
0.115 9, 11, 12, 15, 20, 25

0.12 9, 10, 11, 12, 15, 20, 35

0.1253 9, 10, 11, 12, 15, 20, 25

0.18 5,7,9, 11, 15, 17, 20, 25, 30, 35
0.25 1,2,5,7,10, 13, 14, 15, 17, 20, 25
0.3334 5,17,9, 11, 13, 15, 20, 25, 30

0.4 5,7,9, 11, 15, 17, 20, 25, 35, 40
0.46 5,7,9, 11, 15, 17, 20, 25, 35

each case different densities were chosen in order to explore
the phase map, thereby identifying regions of isotropic, nem-
atic, and smectic phases. Table I includes the parameters con-
sidered for constant volume simulations. For most of the
simulations the number of particles was N=1000. In order to
study finite size effects the number of particles was varied
for a particular arm length A=0.3334.

For the particular case of A=0.18, constant pressure
simulations were also performed using a rectangular simula-
tion box. In this case, a trial configuration was realized by
choosing at random a particle and randomly deciding if a
change in the volume or a particle movement is tested. For a
particle move, either a translation or a rotation was chosen
with an equal probability.

In order to test the quality of equilibration, most of the
runs were started from two different initial configurations,
one of them completely disordered as in the liquid phase,
while the other one was started with orientational order as in
a nematic phase. Equilibrium was assumed when properties
of both simulations became stable and coincided with each
other. The parameters used to check the criterion for equilib-
rium were the nematic, S, and smectic, A, order param-
eters. Although expensive, this route increases the certainty
about reaching the equilibrium state. Several millions of con-
figurations were generated for both equilibration and produc-
tion.

In two dimensions the nematic order parameter S can be
computed as follows:?

R
S:;/ > cos(29) ), (2)

i=1

where ; is the angle between the body B of the molecule i
and the nematic director n, and the angular brackets denote
the configurational average, where n can be obtained accord-
ing to Ref. 2.

The smectic order parameter is defined as the Fourier
transform of the density of particles13

1 N
Ag=—\ | X ] ), 3)
N j=1

where N is the number of particles, k=27/\g,, Ay, is the
distance between layers of molecules, and d; is the projection
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of the coordinates of particle i onto the direction of the smec-
tic director s, which is actually orthogonal to the layers. In
Appendix A, an efficient method is proposed to calculate
nematic and smectic order parameters.

To analyze in more detail the structure of different
phases, the parallel g, and perpendicular g, distribution
functions are calculated, which are defined as

| N N
go(r) = ]7 E 2 APy(r+r;=1) /, 4)
P\ i j#i

where § is the Dirac & function, ® ={ll, L}, P;(x)=(x-s)s is
the projector of position coordinates of the centers of mass of
molecules onto the smectic director s, and P (x)=(x-t)t is
the projector perpendicular to s, so that the relation s-t=0
holds. We note that for the different liquid crystal phases, a
characteristic behavior is expected for the distribution func-
tions: (i) isotropic phase: both g, and g | are structureless; (ii)
nematic phase: also both functions are structureless, since the
functions do not contain any information about orientations;
(iii) smectic phase: g; shows a periodic pattern, according to
the smectic periodicity, while g is structureless. In order to
complete all definitions of properties used in this paper, we
anticipate some of our results discussed in the next section:
(iv) An intermediate phase exists, where smectic layers start
to form in separated clusters, which have no common direc-
tor. In this case, both g, and g, show a periodic pattern with
decaying amplitude, which indicates short ranged correla-
tions across the clusters. In the transition zone from this re-
gion to smectic phase, g starts to lose structural informa-
tion. In this so called defective smectic region, at
intermediate density p and arm length A, there are groups or
piles of molecules that are stacked in such a way that their
centers of mass draw a curved line. In these groups, the
centers of adjacent particles are so close to each other that as
a consequence, the orientation of adjacent molecules is
highly correlated. As an attempt to characterize this region
and to provide a quantitative way to differentiate it from the
isotropic one, the fraction number ®; was defined as the
average number of molecules which have at least one close
neighbor relative to the total number of molecules N
Thereby a molecule j is defined as a close neighbor of mol-
ecule 7 if its center lies inside of a circle with radius R cen-
tered at i. The distance R is defined through molecular pa-
rameters as the minimum between the arm length A and half
of the body B of the molecule and R=min(A,B/2), i.e.,

1
q)fr=;’<21;3jl|l‘i—l‘j|$R>. (5)

Because of its definition it is a short range order property and
not a real order parameter. However, it gives a manifestation
of the formation of the cumulus of molecules where their
centers are sufficiently close. In a very dense phase with
layers of molecules, ®;— 1 because most molecules would
have at least one neighbor which is very close, while on the
other hand, in a very dilute phase ®;— 0 (in Appendix B the
maximum orientation between two molecules is calculated,
obeying this criterion).
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FIG. 2. Map of mesophases of the bent hard needle model: isotropic (tri-
angles), nematic (crosses), defective smectic (stars), and smectic (circles).
Different regions are shown as function of number density p vs arm length
A. Phases were identified according to characteristic parameters, i.e., nem-
atic order parameter, smectic order parameter, ®y function, and both parallel
g and perpendicular g, distribution functions.

lll. RESULTS

Most of the results were obtained using constant volume
Monte Carlo simulations. For the particular arm length A
=0.18, constant pressure Monte Carlo was used additionally
as a check, as discussed in Sec. III F. The molecular angle in
all cases was fixed to #=90°. Figure 2 shows a map of the
different phases obtained with constant volume Monte Carlo,
where the density, p, is plotted versus molecular arm length
A. For each value of A simulations were performed for a
series of densities starting from low (p=15) up to high values
(p=40). For the series of densities studied, only those points
are shown which are closest to the border lines between dif-
ferent regions. The dotted lines are plotted as a guide to the
eye in order to indicate the transition zone between different
regions. Note that these lines are not to be understood as
phase coexistence lines, but are drawn as midpoints between
distinct phase points. As can be seen from Fig. 2, for suffi-
ciently low density an isotropic phase is found for all values
of A. Triangles correspond to the highest density found for
this phase. For intermediate densities, the different regions
depend strongly on the value of A. The nematic phase that is
shown by crosses in the phase map is located in those re-
gions where the values of A are either close to zero or close
to 1/2, i.e., very small or very large values of the arm length.
In both cases molecules have a needlelike shape (A/B>1 or
A/B<1) and therefore they have similar properties to the
hard needles of Frenkel and Eppenga,2 i.e., they show a nem-
atic behavior. On the other hand, when the shape of the mol-
ecules is not needlelike, A/B=1, they do not have nematic
behavior and instead the molecules aggregate in curved lay-
ers, what is called here a defective smectic region. For ex-
ample, for values of arm length around A=0.25 (in the center
of the figure), no nematic phase is found but instead there are
smecticlike domains, where the layers of molecules follow a
curved path (defective smectic region). This region is located
in between the isotropic and the smectic region. Stars indi-
cate the points for which this region was found. More explic-
itly, for intermediate values of arm length A the defective
smectic region appears instead of the nematic phase. Both
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FIG. 3. Properties for a typical case of the isotropic phase corresponding to
molecular arm A=0.0625 and density p=35. (a) Snaphot of one of the final
configurations, and (b) the parallel g, (dotted line) and perpendicular g,
(solid line) distribution functions.

the defective smectic region and the nematic phase are lo-
cated between the isotropic and smectic phases. Finally, if
the density is sufficiently high the smectic behavior is found,
for all values of the molecular arm length A, except the lim-
iting cases A=0 and A=0.5. Circles are plotted for the states
of smallest density corresponding to the smectic phase. As
shown below, a manifestation of this behavior can be found
for the smallest value of arm length studied (A=0.0625)
where a significant indication of the appearance of smectic
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FIG. 4. Same set of properties as in Fig. 3 for the smectic phase correspond-
ing to molecular arm A=0.25 and density p=20.
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phase is found for sufficiently high density, namely, p=40. due to a stable periodic pattern. Therefore, decaying oscilla-

All conclusions mentioned above are based on the evidence tions with a decay length £>1 are indicative for an emerging
from the corresponding snapshots, nematic and smectic order ~ smectic phase (from a fitting procedure a value of é=35 was
parameters S and A, respectively, as well as the parallel obtained). The decay length & is defined here as the exponen-
and perpendicular distribution functions, g,(r) and g (r),  tial decay of the upper envelope, f(r), of the oscillations, i.e.,
shown in Figs. 3—6 discussed below.
fr)=1+ce™,
A. Isotropic phase
where c is the amplitude at r=0. In Fig. 7(b) the nematic S
Figure 3 shows several properties for a typical case from and smectic A, order parameters are displayed as well as
the isotropic region, p=>5 and A=0.0625." In Fig. 3(a) one the fraction function @y, as a function of density p. As the
of the final configurations is shown from simulations where density p increases, the nematic order parameter S tends to
for clarity only a fraction of the body B of the molecule is large values S~ 1.8 1t can be seen that the smectic order
displayed and the center of mass is represented by a solid
circle.' Figure 3(b) shows both the parallel g, and perpen-

dicular g, distribution functions.'” Both of them exhibit rEy /,/V///'/’/',Z” i ,Z”//; A
practically the same features: they reveal a random, struc- :/,'f/;ﬂ ;::’/’/////1 ’,",ﬁ//”,/”b’/,,;:(/, ?//7,;;7,’,?’//
tureless behavior which indicates an isotropic phase. Struc- ALy ,/,f////,’f Z, ;{//’, \‘,‘,‘: ’W’{ /" z
tural properties and order parameters are shown in Fig. 7(a). /’; I ";2:,2’5 :)/,/,’/’,;4 / /’;’///” ’/;,.' v
The nematic order parameter S, smectic order parameter A, et ’;/,///17’5 il u
and the fraction @y, are plotted as a function of density. As is ,'/,/,/” ;’{” 7 ,7’;’,,2 ”,ﬂ’,,/’,’fj//;; 7/;7’5
seen for p=5 the values of the parameters are quite small, St ,’/Cc /,’ Z//f;: ‘. 9/1'7//,’,!,4, o
characteristic of an isotropic phase. Also the fraction func- /f’//’/ {/[’jg/if:/{{ st W a’/://'}///f;»
tion @y is very small, reflecting the fact that in the low 77 ,’4,/:’ ’/ 77?’;,//7/’; ,’;:,””/:lj ;]
density phase it is unlikely to build up clusters with short (a) RSN VAP

range correlations.

1.2 l T :
B. Smectic phase i ]

As representative for the smectic region the arm length 0.8l .
A=0.25 and density p=20 is chosen (see Fig. 4). In Fig. 4(a) - 1
a snapshot of one of the final configurations is shown. In Fig.
4(b) the parallel and perpendicular distribution functions, g, 041 -
and g, are displayed. As is clear from the figure, a strong K i
difference exists between the distribution functions. While
g exhibits no structure, showing an isotropic distribution of b .
molecules perpendicular to the smectic director, g; exhibits (b) r

decaying oscil.lations with Perif)diCit)ﬂ A¢p- In an ideally de- FIG. 6. Same set of properties as in Fig. 3 for the nematic phase correspond-
veloped smectic phase, oscillations would not decrease at all ing to molecular arm A=0.46 and density p=11.

g\u
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FIG. 7. Density dependence of the

30 nematic (solid circles) and smectic
(solid triangles) order parameters S,
A and fraction @y (solid squares)

for molecular arm, (a) A=0.0625, (b)
] A=0.25, (c) A=0.3334, and (d) A
. =0.46.

parameter, A, increases as well but at the largest density
studied, p=25, it has not yet saturated. This indicates a
strong orientational order and significant periodic positional
ordering in one of the directions of the simulation box, actu-
ally in the direction of the smectic director. In contrast to the
isotropic case, the fraction function @, is rising faster than
both other order parameters and it seems to be saturated for
p=15. This means that for this arm length, A=0.25, local
structures, characterized by close neighbors, appear already
for small densities, leading to a formation of small clusters,
which have no common orientation for this regime of low
density. This is the reason why S and A, get larger values
only at larger densities. The fact that ®y, raises fast means
that, as the density increases, the molecules start to assemble
among themselves by generating layers, thereby preventing
displacements along the body of molecules and limiting the
formation of nematic structure (see below). This behavior
was found to be characteristic for arm lengths in the center of
the phase map, i.e., in the vicinity of A=0.25.

C. Defective smectic region

Figure 5 corresponds to the case of the defective smectic
region where the layers of molecules are curved. To show the
characteristics of this region, densities p=9 and p=11 are
analyzed for a molecular arm length A=0.3334. Figures 5(a)
and 5(c) contain snapshots showing that molecules are ar-
ranged in layers which follow curved patterns. In the case of
the lower density, p=9, the curvature of the layers is more
pronounced than that for the case of density p=11. Although
the difference is not large, it is well established. Figures 5(b)
and 5(d) contain information of the distribution functions for
p=9 and p=11, respectively. The parallel g (r) and perpen-
dicular g, (r) distribution functions are represented by solid
and dotted lines, respectively. It is worth to mention that the
direction used to calculate the parallel and perpendicular dis-
tribution functions is that defined by the smectic director s.
The criterion used to define the direction of s is based on a
maximization procedure. In this region, where curved layers

of molecules are formed, the maximization procedure pro-
duces a result when the layers of molecules in the system
show certain alignment among them. In this region, the tran-
sition from isotropic to smectic takes place quite slowly as
the density increases. That is, the effect starts from being
very small, until the density increases sufficiently that all
layers are straight and parallel to each other, corresponding
to the smectic phase. More specifically, from the distribution
functions for the higher density, p=11, Fig. 5(d), it is pos-
sible to see that a slightly dominant direction emerges that
allows to define a smectic director which finally produces
that g(r) is more structured than g | (r). For the lower density
p=9 this is not possible; the smectic director s is not as
clearly defined and therefore there is not an evident differ-
ence between the parallel and perpendicular distribution
functions. As seen in the Fig. 5(c) both functions show a very
similar behavior, i.e., a damped oscillation indicative for
short range correlations. For this case the decay length is
found to be of the order £= 1. Both functions show a similar
behavior which is a sign for an isotropic distribution of small
clusters, which is consistent with the findings shown in the
corresponding snapshots. That is, in the defective smectic
zone the anisotropy develops in a continuous way until the
density is sufficiently high. It is to be expected that when the
density increases, approaching the smectic region in the
phase map, the perpendicular distribution function will lose
its features while the parallel one will get more structured.
Therefore, the defective smectic region may be considered as
a smooth transition zone from the isotropic phase into the
smectic one. Figure 7(c) shows the nematic S, and the smec-
tic Ay, order parameters, and the fraction function @ as a
function of density. It can be seen that S and A, remain
relatively small even for densities of about p~12. Both or-
der parameters have a noticeable increment in approximately
the same interval of densities, namely, p € [13,19]. On the
contrary, the fraction function ®, increases remarkably fast,
actually only for the range of values around A =~ (.25, at the
center of the phase map, and as a matter of fact the function
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FIG. 8. Dependence of the order parameters with the number of particles N
for an arm length of A=0.3334. Figure 8(a) shows S=S(p) and Fig. 8(b)
shows A=A (p); in both cases N=100 (solid circles), 250 (solid
squares), 500 (stars) and 1000 (solid triangles) are considered.

@, increases faster than S and Ag,,. As a general remark, for
the extreme values of the arm length, namely, A=0 or A
~().5, the nematic order parameter S reaches a plateau with
its maximum value at smaller densities than the correspond-
ing ones for the smectic order parameter A, and the func-
tion ®;. An implication of this observation is that as the
density increases, the orientational ordering occurs before the
ordering of the positions of the centers of mass of the mol-
ecules. This is the reason why the fraction function @y, re-
mains small for the isotropic and nematic phase. Only for the
phases where layers of molecules exist the @y, function has a
steep increment which occurs for low densities.

D. Nematic phase

Finally, to discuss the nematic phase a system with mo-
lecular arm length A=0.46 is chosen. Results for this case
are shown in Fig. 6. As before, Fig. 6(a) shows a snapshot of
the system, and Fig. 6(b) has the information about the par-
allel and perpendicular distribution functions which are both
randomlike as in the isotropic fluid. This is to be expected
since the only characteristic of the nematic phase is the nem-
atic director. Since there is no spatial order of center of mass
positions and orientational properties are not reflected in g
and g, they resemble the same features as the isotropic
phase. In Fig. 7(d) the nematic and smectic order parameters
and the fraction function @y, are plotted versus the density p,
where it can be seen that the nematic order parameter S
increases relatively fast compared to the smectic order pa-
rameter Ay, and the fraction function ®;, which only shows
a moderate increase.

J. Chem. Phys. 125, 104908 (2006)

E. System size dependence

To investigate the dependence of the parameters as a
function of the system size, simulations were performed for
systems consisting of N=100, 250, 500, and 1000 molecules
having an arm length of A=0.3334. In Fig. 8(a) the nematic
order parameter S(p) is shown from where it is seen that all
curves tend to unity for densities p>> 20, independent of the
system size. However, for this particular arm length, this fact
should not be taken as an evidence for the existence of a
nematic phase but as a consequence of the orientational order
in the smectic phase. This consideration can be confirmed by
the phase map shown in Fig. 2. A different situation occurs
with the smectic order parameter A, [see Fig. 8(b)], where
there is a noticeable difference for varying numbers of par-
ticles, N. It can be seen that as the system gets larger, the
numerical value of A, decreases. This can be taken as an
evidence of missing long range order in the thermodynamic
limit.

The reason for the decrement of the smectic order pa-
rameter is possibly the appearance of defects, i.e., smectic
layers are not infinitely long (in a periodic system), but lay-
ers may break while others combine or recombine, resulting
in finite length layers located in interstitial positions between
smectic layers. This gives rise to nonideal layers and to an
induced curvature which results in the observed reduction of
the periodicity length A ,. For very big systems, it is ex-
pected that not only the smectic but also the nematic order
parameter will decrease due to a loss of orientational corre-
lations on large length scales. However, as it is found in the
present work, the nematic ordering is more robust with re-
spect to defects. Large scale simulations for the study of long
range disorder are in preparation.

F. Constant pressure Monte Carlo

In order to test the existence of several regions, particu-
larly the defective smectic region, a series of constant pres-
sure Monte Carlo simulations was performed. For the simu-
lations in the isobaric-isothermal ensemble, we performed
trial steps where a random walk in In V is made. These vol-
ume (area) changes were applied to the system by consider-
ing a change in only one, randomly selected, dimension of
the box at each trial, with a corresponding rescaling of the
centers of mass of the particles. This allows the simulation
box shape to depart from a perfect square. The acceptance
criterion is then evaluated according to the NpT-Metropolis
algorithm.19 The maximum In V change was adjusted along
the simulation so that approximately 30% of the volume
changes was accepted. In order to get proper statistics several
millions of Monte Carlo steps were performed for each pres-
sure.

As a main result the transition from isotropic and smec-
tic phases was found to be in the same place in both en-
sembles, namely, at the high density border of the defective
smectic region. The existence of a defective smectic region
was therefore confirmed. It shares characteristics of both the
isotropic and smectic phases. More specifically, when the
density is increased, the anisotropy starts to develop in a
continuous manner. If the density increases from low p=35
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TABLE II. Constant pressure and constant volume results for a system of
N=1000 particles. The density, nematic and smectic order parameters are
shown with corresponding standard deviations in both ensembles, NVT and
NpT. For the defective smectic region, the equilibrated system had very slow
relaxation so that the averages had to be taken over 10° Monte Carlo steps.

p P S A Ensemble

5.0 — 0.04+0.02 0.13+0.01 NVT
5.1+0.06 15 0.04+0.02 0.15+0.01 NpT
7.0 — 0.06+0.03 0.14+0.01 NVT
7.21+0.10 25 0.06+0.03 0.15+0.01 NpT
9.0 — 0.07+0.03 0.15+0.01 NVT
9.68+0.15 35 0.10+0.06 0.19+0.02 NpT
11.0 — 0.14+0.07 0.18+0.02 NVT
11.1+0.23 40 0.13+0.06 0.21+0.02 NpT
13.3+0.15 45 0.47+0.10 0.30+0.04 NpT
15.0 — 0.86+0.02 0.29+0.04 NVT
16.02+0.34 50 0.88+0.01 0.41+0.06 NpT
17.0 — 0.93+0.01 0.40+0.07 NVT
17.4+0.4 52 0.93+0.01 0.44+0.05 NpT
20.0 — 0.96+0.01 0.53+0.08 NVT

(typical for the isotropic phase), to p=~9 the molecules start
to assemble in order to generate curved layers for which it is
not possible to define a smectic director and giving as a net
result a regime which is basically isotropic. As the density is
increased further, a preferred direction in the system starts to
emerge that is defined by a slight majority of layers of mol-
ecules. This effect is more evident as the density increases
even more, until all layers of molecules are aligned and par-
allel to each other, defining more clearly a specific direction
that corresponds to the smectic director. It may be mentioned
that the box lengths L, and L, were found to be rather similar
for most of the densities.

In Table II the consistency between the NVT and NpT
Monte Carlo simulations results is shown. The nematic and
smectic order parameters are shown as a function of density
p, from where it is seen that the order parameters increase
continuously as a function of density irrespectively from
NpT or NVT. The smectic order parameter is very similar in
both ensembles, thereby confirming that the transition to the
smectic phase occurs in the same density range in both en-
sembles. On the other hand, a significant discrepancy is
found in the defective smectic region in the values of the
nematic order parameter. An examination of the snapshots,
however, shows no appreciable nematic order in either case.

IV. SUMMARY

Extensive Monte Carlo simulations of bent hard needle
systems were performed in the NVT ensemble, providing a
map of liquid crystal phases. A rich phase behavior was
found due to the geometric properties of the model, particu-
larly the existence of the arm length A of the needles. For
low enough densities, an isotropic behavior was found for all
values of A, while for very high densities, the system exhib-
its a smectic phase for all A, except A=0 and A=0.5 corre-
sponding to the hard needles of Frenkel and Eppenga.2 For
intermediate values of density p, the phase map is rather
symmetrically centered around A=0.25. For small and large
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A a nematic phase can be observed. This is to be expected,
since molecules behave close to straight needles, for which
the nematic phase is well known.” In the central part of the
phase map, A=0.25, a nontrivial phase behavior of needles
was observed. In this region an apparently smooth transition
from the isotropic to the smectic phase takes place by the
formation of slightly curved clusters, which have no com-
mon director. Therefore, short range correlations can be ob-
served in both g(r) and g, (r). The observed phase transi-
tions may fall in the category of Kosterlitz-Thouless
transitions  since  the intermolecular potential is
nonseparable.2 In the present paper this type of phase transi-
tion is not proven. However, the study of the system size
dependence of the smectic order parameter A, for molecu-
lar arm length A=0.3334 [cf. Fig. 8(b)] may be considered as
strong indication for a lack of long range order [increasing
the system size tends to decrease the value of Ag,(p)].

In order to perform a more robust test for the existence
of different phases, in particular, the defective smectic region
NpT simulations were performed for the arm length A
=0.18. The major conclusions from these simulations were
the confirmation of the presence of the defective smectic
region, and that the transition from the isotropic phase to the
smectic one was gradual.

In the present paper only needles with arms orthogonal
to the body, e.g., 6=m/2, were investigated. Preliminary re-
sults show that in the case of < 7/2,*' the central region in
the phase map, what was called defective smectic, shrinks,
i.e., it is observed in a smaller range of arm lengths and for a
smaller range of densities. This may be understood from the
fact that molecules get closer to the shape of straight hard
needles for which no smectic phase is known.” Therefore,
also the nontrivial phase of ordered clusters will be less pro-
nounced and will finally vanish for 6— 0.
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APPENDIX A: CALCULATION OF NEMATIC
AND SMECTIC ORDER PARAMETERS

In order to calculate the nematic order parameter, Eq.
(2), and the smectic order parameter, Eq. (3), one has to have
a reliable estimate for the nematic director n and both the
smectic director s and the periodicity length A, of smectic
layers.

The nematic director is straight forwardly calculated as
the direction of average orientation of molecules, relative to
a given reference frame. The orientational angle is thereby
given as
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035} SoP

FIG. 9. Surface plot of the smectic order parameter, A, as function of the
orientation angle, B, of the smectic director and the smectic periodicity
length \,. For structures with moderately large order parameters (here
A, =0.4) the parameter landscape is dominated by a large peak around the
true maximum position.

N
1
(B)=—2 9, (A1)

NiZ
where N is the number of bent hard needles in the system
and the nematic director n can be calculated as

n = (cos{Y),sin{I)). (A2)

The calculation of the smectic order parameter is more
elaborated. Since molecules may have a different orientation
than the smectic director (e.g., smectic C phase), s cannot be
calculated as a simple average over molecular orientations.
Also, the periodicity length, A, cannot be estimated from
simple configurational properties. Therefore a possible (but
expensive) route to calculate the smectic order parameter
would be to make trial estimates for both s and A, and take
those parameters into account for which the smectic order
parameter gets its maximum,

A= max{Smal(s,)\sm)}.

sm

(A3)

In a systematic way all possible parameter combinations
in the (B,\,) plane are scanned where B defines the direc-
tion perpendicular to the smectic director s and is given by
Eq. (A5). The resolution of the optimization procedure is
thereby given by 68 and O\, which typically lie in the
range of 7/100 and 1/100, respectively.

This procedure implies a two dimensional optimization
procedure, which is rather CPU time consuming when scan-
ning a dense set of possible parameters for (s,\gy,).

Therefore an alternative faster scheme is proposed. Fully
developed smectic phases are found only for high density
systems of bent hard needles and the centers of mass of
adjacent particles are significantly close to each other. The
proposed procedure consists in finding adjacent particle pairs
and calculating the average orientation, (), of the distance
vector

N
By=2, arctan(yi—_yz>, (A4)

i=1 Xi—Xj
where  rj=min{r={r,....ry};[r;—r|>dy,} and d,

=min(A,B) (d;, is introduced in order to average out very
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FIG. 10. Contour plot of the same parameter landscape as in Fig. 9. The
shaded area indicates the region, in which a refined search of the rrue maxi-
mum position is done. The initial guess, based on the approximate order
calculation, as described in the text, is located in the center of this region.

large slopes, which can arise when distances between par-
ticles get very small and center of mass coordinates are
shifted along their B axis). Note that in a perfect smectic
phase, the centers of masses of molecules belonging to one
same layer lie on a single straight line with orientation 8 in
the Cartesian reference frame. The direction perpendicular to
this line is the smectic director. For the nonideal case, the
average orientation of the layer is considered and the smectic
director is given by

s = (= sin(B),cos(B)). (AS)

We note that this nearest neighbor search can be done in
O(N) complexity by using linked-cell lists' >’ with cell sizes
of I.;=1 (length of one molecule).

The next step consists in calculating A,,. This is done by
projecting all particle positions onto the smectic director and
building a histogram which gives a distribution of particles
along s. Assuming an ideal smectic phase, this would lead to
ideal line maxima separated by A,,. In the nonideal case one
gets distributions which nevertheless have their maxima

|b+ b,|/2

FIG. 11. Schematic view of the set of two molecules forming a maximum
angle with each other and fulfilling the minimum distance criterion.
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separated by \,,. The calculation of A, is therefore reduced
to a simple maximum search within a one dimensional his-
togram.

It is clear that this method does not provide uniquely the
global maximum of the smectic order parameter. However, it
gives a reliable estimate for the region in the (8,\,) map,
where the global maximum is likely to be found. Therefore,
the above mentioned method can profitably be used as a
preconditioner for a systematic parameter screening, analo-
gous to Eq. (A3). Using the same parameter resolution, 68
and O\, as for the full scanning procedure, the proposed
method is approximately a factor of 100 faster, since the
area, which is scanned explicitly corresponds to about 1% of
the full (B, \,,) plane.

As an example, consider the case for the arm length A
=0.3334 and density p=15. Fig. 9 shows A, as function of
B and A, which were scanned with §B8=7/200 and O\,
=1/200. As is found, there is a sharp maximum, correspond-
ing to the true smectic order parameter of the system. Cor-
respondingly, Fig. 10 shows the same data as a contour plot.
In this figure, a shaded area is indicated, in which the true
maximum is located. It is the same region in which the pro-
cedure, outlined above, finds an approximate value for A,
which is then refined by scanning the shaded region with the
same O\, and 6B, leading to an improved value of Ag,.

APPENDIX B: MAXIMUM ANGLE OF NEAREST
NEIGHBOR CRITERION

In order to calculate the maximum angle ¢ which two
molecules may have with each other without overlap and
which fulfill at the same time the minimum distance crite-
rion,

d=\(x;— )cj)2 +(y; - yj)2 < R=min{A,B/2}, (B1)

a coordinate frame is introduced, where the origin is located
at the bottom corner of the first molecule (for a sketch, see
Fig. 11). It is anticipated that the maximum angle will be
obtained for molecules (i) being a distance R apart and (ii)
touching each other in the origin and at the end point of the
first molecule.

Therefore the following quantities may be calculated as
follows:

(1) Vector, a, along the lower arm of first molecule,

a,=-A, a,=0. (B2)

(2) Center of mass vector, b;, of second molecule,
b,=Rsin ¢ (B3)
=|b,|sin 7y, (B4)
by,=B/2+Rcos ¢ (B5)
=|b,|cos y. (B6)

(3) Distance of second molecule from the origin,

b, =|b,| = VR*+ B4 + BR cos ¢. (B7)
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A

FIG. 12. Maximum angle y between two molecules with arm length A and
corresponding angle ¢, obeying the minimum distance criterion.

(4) Vector, b,, pointing to the end of second molecule’s
body,

B
b2x=—(5—b1>sin'y (BS)

B(l \/1+4R2+4R ) i (B9)
=——|1- — — COS ¢ |sin v,
2 pr TR Y

b —(1 \/1+4—2+4— ) (B10)
=— - cos @ |cos 7.
2 2 B? B ¢ Y

(5) Vector, a,, pointing along the lower arm of second mol-

ecule,
by,
ay, = —2 (B11)
tan y
R? cos’
=—(1—\/1+4—2+4—cos<p> Y (B12)
B n y
a2y=b2y. (B13)

(6) Angle of orientation v, of second molecule with respect
to body of first molecule [follows from Egs. (B3) and
(B4)],

— 2R sin ¢
y=sin / . (B14)
B\1 + 4(R*B?) + 4(R/B)cos ¢

Now one can formulate the problem as follows: find the
angle ¢ for which both molecules are in touch with each
other (i) at the origin and (ii) the end of the lower arm of the
first molecule, i.e.,

a+32:b2 (BIS)
or

ax+azx—b2x20, (B16)
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(B17)

Because of Egs. (B2) and (B13) the condition Eq. (B17) is
trivially fulfilled, so that the only task is to solve Eq. (B16),
which is written explicitly as

A (1 \/1 4R2 4R ) 1 0
-|1- +4—+4— ——=0.
B* B cose sin y(¢)

Here the dependence of y of the angle ¢ was explicitly
noted. Therefore, knowing ¢, the angle vy is properly calcu-
lated. Unfortunately, this problem has no analytical solution
due the complicated dependence on the angle ¢. However, it
may be obtained numerically.

Figure 12 shows the behavior of 7,,, as well as the
optimum angle ¢. For smallest arms, ¢= 7r/2, which means
a parallel orientation. This shows that those molecules are
unlikely to form clusters of curved shape. The excluded vol-
ume of these molecules is so small that very close molecules
can orient only parallel to each other. In dense phase, mol-
ecules for apart will be oriented with a similar director,
which is the nematic phase. But the smectic phase is only
obtained for very high densities and A >0, which may be
understood as a packing effect. For A=0 there is no such
packing effect and the smectic phase is absent.” For larger
values of the arm the maximum angle ¢ tends to 7. This
means that those molecules are very likely to form local
clusters of curved shape as it is observed in the phase map
(see Fig. 2). These local clusters can then be understood as
condensation nuclei for a smectic phase. The angle y shows
a nontrivial dependence on ¢ and A. It has a sharp maximum
at A=0.25, where y=m/2. This result comes out from the
fact that A=B/2 in this special case. For larger arms vy de-
creases again taking values y— /2 for values of A—1/2.
The vy dependence of the arm length A is nearly symmetri-
cally centered around A=0.25. This is a strong indicator of
two corresponding arm lengths A;=0.25-x and A,=0.25+x

a_‘, + azy bl b2y = 0

(B18)

J. Chem. Phys. 125, 104908 (2006)

(x €[0,0.25]), having equivalent geometric properties. This
would also explain the rather symmetrical distribution of
phases in the observed phase map.
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