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Abstract

During a series of 8 measurement campaigns within the SPURT project (2001–2003),

vertical profiles of CO and O3 have been obtained at subtropical, middle and high

latitudes over western Europe, covering the troposphere and lowermost stratosphere

up to ∼14 km altitude during all seasons. The seasonal and latitudinal variation of the5

measured trace gas profiles are compared to simulations with the chemical transport

model MATCH. In the troposphere reasonable agreement between observations and

model predictions is achieved for CO and O3, in particular at subtropical and mid-

latitudes, while the model overestimates (underestimates) CO (O3) in the lowermost

stratosphere particularly at high latitudes, indicating too strong simulated bi-directional10

exchange across the tropopause. By the use of tagged tracers in the model, long-range

transport of Asian air masses is identified as the dominant source of CO pollution over

Europe in the free troposphere.

1. Introduction

The distribution of ozone (O3) in the troposphere is affected by downward transport15

from the stratosphere (e.g. Levy et al., 1985; Holton and Lelieveld, 1996; Marcy et al.,

2004) and local photochemistry (e.g. Crutzen, 1995; Lelieveld and Dentener, 2000).

For a budget calculation of tropospheric O3 at a given location, photochemical produc-

tion and destruction, as well as transport in and out of the region have to be considered.

This can only be achieved by 3-dimensional chemical transport models (CTM) or global20

circulation models (GCM), which need to be tested against observations from in-situ

or remote sensing measurements (e.g. O’Connor et al., 2004; von Kuhlmann et al.,

2003a). Although global observations of tropospheric O3, carbon monoxide (CO) and

nitrogen dioxide (NO2), the latter being important O3 precursors, have recently become

available from satellite-based observations (Fishman et al., 1990; Borrell et al., 2003;25

Deeter et al., 2004; Buchwitz et al., 2004), the measurements are generally not verti-
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cally resolved and refer to cloud-free conditions only, which limits their representative-

ness. Additionally, satellite retrievals must be validated against independent remote

sensing or in-situ data. Furthermore, regular O3 soundings are launched at various

locations in the world (Logan, 1999), but they lack information about O3 precursors.

In general, detailed information about profiles of O3 and its precursors is thus only5

available from in-service and campaign-based aircraft measurements. The drawback

of measurements from in-service aircraft, e.g. MOZAIC (Thouret et al., 1998), NOXAR

(Brunner et al., 1998) and CARIBIC (Zahn et al., 2002) is, that trace gas profiles are

often restricted to the vicinity of heavy-duty airports, and are thus not representative

for the background atmosphere. On the other hand, campaign based data sets (for10

a recent compilation see: Emmons et al., 2000) usually provide limited information

about seasonal and spatial variations. Here we present data from a series of air-

borne measurement campaigns made within the SPURT (SPURenstofftransport in der

Tropopausenregion; Trace gas transport in the tropopause region) project (Engel et

al., 2005). The major goal of SPURT was to obtain insight into the distribution of vari-15

ous trace gases in the free troposphere and lowermost stratosphere along the western

border of Europe from the subtropics to the Artic during different seasons. We present

results of 8 measurement campaigns, during which up to 6 flights were performed on

two consecutive days in the period between November 2001 and July 2003. Here we

focus on the data obtained during take-off and landing and compare average profiles20

of O3 and CO for three latitude regimes and different seasons with simulations from

the CTM MATCH-MPIC (Model of Atmospheric Transport and Chemistry – Max Planck

Institute for Chemistry version). In the troposphere the distribution of both species

is controlled by dynamical and photochemical processes so that they are particularly

useful for the evaluation of chemistry transport models.25

In Sect. 2 the SPURT measurements are described, while Sect. 3 presents a de-

scription of the MATCH model. In Sect. 4, the seasonal and latitudinal variations of

in-situ profiles are compared to model results, while Sect. 5 addresses the origin of

CO over Europe based on model simulations with tagged CO tracers. Finally, Sect. 6

9067



ACPD

5, 9065–9096, 2005

O3 and CO

distributions over

Europe

H. Fischer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

summarizes the findings of our study.

2. Observations

A total of eight measurement campaigns covering all seasons were performed within

SPURT between 10–11 November, 2001, 17–19 January, 2002, 16–17 May, 2002,

22–23 August, 2002, 17–18 October, 2002, 15–16 February, 2003, 27–28 April, 20035

and 9–10 July, 2003, respectively. All campaigns were flown out of the aircraft’s home-

base Hohn in northern Germany (54
◦
N, 9

◦
E). A typical campaign consisted of at least

two southbound flights within one day, followed by two or more northbound flights per-

formed on the next day. Thus a series of flights covered the latitude range between

approximately 35
◦

and 75
◦
N along the western shore of Europe. During stop-over10

landings at generally smaller airports in the subtropics (Faro (Portugal, 37
◦
N, 8

◦
W);

Casablanca (Morocco, 33
◦
N, 7

◦
W); Gran Canaria (28

◦
N, 15

◦
W); Lisbon (Portugal,

38
◦
N, 9

◦
W); Jerez (Spain, 36

◦
N, 6

◦
W); Monastir (Tunisia, 35

◦
N, 10

◦
E); Sevilla (Spain,

37
◦
N, 5

◦
W)) and at high northern latitudes (Kiruna (Sweden, 68

◦
N, 20

◦
E); Tromsö

(Norway, 69
◦
N, 18

◦
E); Keflavik (Iceland, 64

◦
N, 22

◦
W); Longyearbyen (Norway, 78

◦
N,15

15
◦
E)) two individual profiles between ground-level and approximately 14 km altitude

were obtained during landing and take-off (Fig. 1).

Amongst others in-situ measurements of CO and O3 were made on-board a Lear-

Jet 35A (Engel et al., 2005; Hoor et al., 2004a). Carbon monoxide was measured

by the MPI-C using Tunable Diode Laser Absorption Spectroscopy (TDLAS) (Kor-20

mann et al., 2002) with a time resolution of 1.3 s and a total uncertainty of less than

1.5%. Details of the CO measurements can be found in Hoor et al. (2004b). Ozone

was measured independently by the FZ-Jülich using UV absorption (time resolution

9 s, total uncertainty 5%) and the ETH Zürich via NO chemiluminescence (time res-

olution: 1 s; total uncertainty: 5%) (Hegglin, 2004; Hegglin et al., 2005). A linear25

regression analysis showed that both measurements agree within their uncertainty

bounds (O3(CLD)=1.069 O3(UV)+5.4 (ppbv), R
2
=0.995; Hegglin, 2004). For the fol-
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lowing analysis 5 s merged data sets have been calculated for each individual flight

by averaging (CO, O3(CLD)) and interpolation (O3(UV)), respectively. From these

merged data, mean profiles at subtropical (<40
◦
N), mid- (approx. 52

◦
N) and high

latitudes (>65
◦
N) have been calculated, grouped for the spring (March/April/May),

summer (June/July/August), fall (September/October/November) and winter (Decem-5

ber/January/February) seasons and 1 km altitude bins (0–1 km, 1–2 km, etc.).

3. Simulations

Average profiles for the different seasons and latitude bands were also deduced from

model simulations, performed with the 3-D chemistry transport model MATCH-MPIC

(Lawrence et al., 2003). The model is driven by meteorological data from the National10

Centre for Environmental Prediction (NCEP) Global Forecast System (GFS), and in-

cludes an extensive non-methane hydrocarbon oxidation mechanism described in de-

tail by von Kuhlmann et al. (2003a). It is optimised for the troposphere and doesn’t

include stratospheric chemistry. Some compounds are adjusted or fixed in the strato-

sphere in order to provide boundary conditions to the troposphere. Values for H2O, O3,15

nitrogen compounds and methane are tied to observations from the HALO project (von

Kuhlmann et al., 2003a). The model resolution is 2.8
◦
×2.8

◦
in the horizontal and in-

cludes 42 σ-levels in the vertical up to about 2 hPa. In addition to the extensive NMHC

chemistry, the runs include regional CO tracers having the same emissions as the

“standard” CO over a chosen region, subdivided into biomass burning and biofuel use,20

industrial and automotive sources, as well as other smaller sources like oceanic emis-

sions, and undergo the same model transport and loss as standard CO. The emissions

for CO and volatile organic compounds (VOC) from energy and industrial activities (ex-

cept for biofuel use) were taken from the Emission Database for Global Atmospheric

Research, EDGAR v2.0 for the VOCs (Olivier et al., 1996) and EDGAR v3.2 for CO25

and NOx (Olivier et al., 2002). Biomass burning emissions (including biofuel use) were

included by von Kuhlmann et al. (2003) based on the climatological CO emission distri-
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bution of Galanter et al. (2000) and on the emission factors presented by Andreae and

Merlet (2001). Here we use only the CO tracers for Asia (0
◦
N–70

◦
N, 60

◦
E–180

◦
E),

N-America (15
◦
N–75

◦
N, 135

◦
W–45

◦
W) and Europe (35

◦
N–75

◦
N, 10

◦
W–40

◦
E), fur-

ther separating between bio-fuel and automotive sources. The background CO is also

calculated as two separate tracers from the photochemical oxidation of CH4 and VOCs.5

Note that the sum of these two tracers is an accurate representation of the total chem-

ical CO source, although the separation between CH4 and VOCs is only approximate.

To separate stratospheric O3 from O3 produced photochemically in the troposphere,

an O3(strat) tracer is used in the model, that marks ozone molecules of stratospheric

origin, but undergoes the same chemistry and transport as total O3. The model was10

run for the period June 2001 until February 2004. Individual profiles were obtained

from the model at the locations and times of the individual SPURT profiles obtained

during take-off and landing. From these, average profiles and 1σ-standard deviations

(in 1 km altitude bins) were calculated.

4. Results15

4.1. Seasonal and latitudinal variation of O3 profiles

Average ozone profiles and 1σ-standard deviation for 1 km bins were calculated for low

(<40
◦
N), mid (∼52

◦
N) and high (>65

◦
N) latitudes during the spring (March/April/May),

summer (June/July/August), fall (September/October/November) and winter (Decem-

ber/January/February) seasons. These were obtained from at least 4 individual profiles20

per season and latitude band. In Fig. 2 observations are shown in red and MATCH

model results in blue. Dashed blue curves indicate the modelled stratospheric con-

tribution to O3. In general, observations and simulations agree quite well within their

combined 1σ-variability, with a few exceptions that will be discussed in detail below.

Both observations and model results exhibit slightly increasing O3 concentrations with25

altitude in the troposphere and a strong increase near the tropopause. Stratospheric
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O3 is highest in the winter and spring seasons at high northern latitudes (note the

different scaling of the O3-axis for low (0–400 ppbv), mid (0–600 ppbv) and high (0–

1000 ppbv) latitudes in Fig. 2). This mirrors the seasonal and latitudinal variation of the

tropopause height, which enables the aircraft to reach deeper into the stratosphere at

high latitudes in winter and spring when the tropopause is lowest. Additionally, strong5

diabatic descent from the overworld fills the lowermost stratosphere with O3-rich air

during late winter/early spring (Hoor et al., 2004b, 2005; Hegglin et al., 2005). In gen-

eral the model tends to overestimate stratospheric O3 mixing ratios at low latitudes

(Figs. 2a and g), underestimates it at high latitudes (Figs. 2c and f), while the agree-

ment is best at mid-latitudes. This is most probably due to the coarse resolution of the10

model around the tropopause, which is about 30 hPa between 300 and 200 hPA, corre-

sponding to an altitude resolution between 0.5 and 1 km. Thus slight differences in the

tropopause height between actual observations and model predictions may lead to a

vertical displacement between average modelled and observed profiles. In general, the

model reproduces the observations quite well, with the exception of the summer profile15

at low latitudes (Fig. 2d), and the winter profiles in the mid- and upper troposphere

(Figs. 2j–l). For summer conditions the model underestimates the O3 concentration at

low latitudes by approximately 30% (the mean observed and modelled O3 between 3

and 9 km altitudes are 81±14 ppbv and 57±5 ppbv, respectively). Note that the MATCH

model predicts that the stratospheric O3 contribution between 3 and 9 km is only 30%20

of the modelled tropospheric O3 concentration, the smallest value simulated for all pro-

files. This is no surprise, since the photochemical activity in the subtropics in summer

is expected to be high, due to the generally cloud free conditions and high solar inso-

lation over southern Europe (Lelieveld et al., 2002). Therefore, the discrepancy can be

either due to an underestimation of transport of O3 from the stratosphere, or an un-25

derestimation of the net O3 production in the free troposphere by the model. A recent

study by Jing et al. (2005) demonstrated that enhanced isentropic transport in summer

across the subtropical jet leads to an ozone maximum in the upper troposphere of the

subtropics, which is in agreement with our findings.
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Too high O3 in the troposphere is modelled for the winter profiles, in particular in the

upper troposphere (Figs. 2j–l). Observed and modelled O3 mixing ratios at 8.5 km are

51±14 ppbv, 48±5 ppbv, 71±26 ppbv and 99±31 ppbv, 116±28 ppbv, 118±27 ppbv for

low, mid and high latitudes, respectively. Approximately 90% of the modelled O3 at

8.5 km is predicted to originate from the stratosphere. Therefore it seems that MATCH5

either predicts a tropopause that is too low, or overestimates the transport of strato-

spheric air across the tropopause.

The seasonal and latitudinal variation of tropospheric O3 is discussed in the follow-

ing for the 5.5 km altitude bin, which is considered to be representative for the free

troposphere, since it is neither influenced by small scale anomalies of the tropopause10

height nor by local emissions of O3 precursors that generally take place in the bound-

ary layer. Table 1 lists the mean and 1σ-standard deviation of observations and model

results for the 5.5 km bin, at various seasons and latitudes. Additionally, the fractional

contribution of stratospheric O3 is listed. In general, seasonal and latitudinal variations

of measured tropospheric O3, at least in the middle troposphere, are remarkably small,15

varying between approximately 50 and 60 ppbv, with the exception of the summer pro-

files at low latitudes. If one takes into account that the solar irradiance - which drives

photochemistry – strongly varies with season and latitude, the small variation of tro-

pospheric O3 is rather remarkable. While the highest O3 mixing ratios at low latitudes

are observed during the summer (80 ppbv), O3 at mid and high latitudes peaks during20

the spring season (61–63 ppbv). The lowest mixing ratios are observed in winter at all

latitudes (49–56 ppbv). The smallest variability is also observed in the winter seasons,

consistent with observations by Logan (1999). The observed seasonal variation is at

odds with the MATCH model simulations, predicting the highest concentrations in the

winter (87–93 ppbv) due to strong O3 import from the stratosphere. During the winter25

stratospheric O3 contributes on average between 85 and 90% to tropospheric O3 at

5.5 km. For the summer season MATCH underestimates the tropospheric O3 concen-

tration at low latitudes, when the stratospheric contribution is modelled to be minimum,

ranging between 30% at low latitudes and 50% at high latitudes. As mentioned before,
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this indicates that the exchange between the stratosphere and the troposphere is most

probably too strong in MATCH, in particular for the winter, while net O3 production at

high solar irradiance is underestimated.

A comparison between observations and model results for the boundary layer is

not possible since O3 observations are often limited to altitudes above 2.5 km. Com-5

parisons for the upper troposphere are difficult due to the averaging over different

tropopause altitudes and are thus not discussed in detail here.

4.2. Seasonal and latitudinal variations of CO profiles

Figure 3 shows measured (black) and simulated (grey) CO profiles for the three lati-

tude regimes during the four seasons. Additionally, CO tracers (coloured) are plotted to10

compare the contributions of photochemical CO production from CH4 and VOCs (pur-

ple) with those of long range transport of primary CO emissions from Europe (green),

North-America (red) and Asia (blue) (see Sect. 5).

In general, CO measurements and MATCH model simulations agree best in the mid-

dle and upper troposphere between approximately 3 and 10 km. At lower altitudes in15

the boundary layer, MATCH tends to underestimate CO mixing ratios. This is most

probably due to local pollution at the airports, since boundary layer measurements are

restricted to take-off and landing at various airports. In the middle and upper tropo-

sphere, simulations and observations agree within their combined 1σ-variability, with

the exception of the summer profiles at mid and high latitudes (Figs. 3e and f) for which20

the observed CO mixing ratios are significantly higher than the model predictions. We

will discuss these differences in more detail in the next section.

Above the tropopause in the lowermost stratosphere MATCH significantly overesti-

mates the CO concentration. This is in line with the previously discussed underesti-

mation of O3 concentrations above the tropopause by MATCH attributed to excessive25

bi-directional stratosphere-troposphere-exchange (see Sect. 4.1). One possible expla-

nation may be linked to the interpolation of NCEP vertical wind data to the MATCH

coordinates, being sensitive to relatively small errors. Another potential reason is ex-
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cessive numerical diffusion. Similar findings were described by Brunner et al. (2003) in

an evaluation of five global CTM.

For a discussion of the seasonal and latitudinal variation of CO we again concentrate

on the 5.5 km bin, which is not directly influenced by local pollution or direct strato-

spheric impact. Table 2 shows the average and 1σ-standard deviation of observed and5

simulated CO mixing ratios between 5 and 6 km altitude as a function of latitude and

season. Middle tropospheric CO mixing ratios generally increase with latitude, reflect-

ing the shorter photochemical lifetime associated with higher irradiance. This is in line

with generally higher concentrations in winter/spring compared to summer. The lati-

tudinal and seasonal variations deduced from the observations are reproduced by the10

model. Mean mixing ratios, and even the variability represented by the 1σ-standard

deviations, are generally in excellent agreement, with the exception of the summer

season at high latitudes, as mentioned before.

5. Photochemical CO production versus long range transport

In Fig. 3 the simulated CO profile is deconvoluted into various sources. The main15

contribution at all altitudes comes from photochemical CO production via oxidation of

CH4 and VOCs (purple line in Figs. 3a–l). This chemical background is of the order

of 50 ppbv throughout the year and mainly due to the oxidation of CH4. Contributions

by long range transport of primary CO emissions (solid colour lines in Fig. 3 are to-

tal emissions from the combustion of fossil fuels and biomass burning, dashed lines20

represent biomass/biofuel burning only) from Europe, Asia, and North America indi-

vidually are generally smaller than photochemical production. The largest contribution

is attributed to Asian CO emissions (25 to 40 ppbv). This contribution is rather con-

stant throughout the troposphere, with highest values in spring and lowest values in

summer. Biofuel use and biomass burning constitute about 50% of the direct Asian25

CO emissions. Contributions by North American emissions are comparable to Asian

sources in particular at altitudes below approximately 6 km, becoming less significant
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at higher altitudes. The seasonal variation is less pronounced than for the Asian emis-

sions and the contribution by biomass burning and biofuel use is generally small (less

than 10 ppbv). European emissions are only significant at low altitudes, in particular at

mid-latitudes, and decrease strongly with height.

A quantitative budget analysis is again obtained for the 5.5 km altitude bin (Fig. 4).5

The contribution from photochemistry (purple) is smallest in the winter and spring sea-

sons (33–35%) at high latitudes and highest (56%) in summer at low latitudes. This

is in line with the photochemical activity peaking at high solar irradiance in summer.

Long-range transport of Asian emissions (blue) contributes 20–25% to the CO budget

at 5.5 km at all latitudes and seasons, with the contributions of biofuel/biomass burn-10

ing and fossil fuel combustion being approximately equal. North American emissions

(red) account for 15–20% of the CO budget, with significant contributions from biomass

burning only in the summer at high latitudes. European emissions (green) are highest

during the summer at mid-latitudes (∼15%), and smallest at low latitudes during all

seasons (<10%).15

This source apportionment is in quantitative agreement with a recent study by Pfister

et al. (2004) using CO measurements from MOPITT and MOZART-2 CTM simulations

to analyse the CO budget over Europe, indicating the robustness of our understand-

ing of these budgets, i.e. within the limits of uncertainty in current global chemistry

transport models.20

As mentioned in the previous section MATCH underestimates the CO concentration

in the middle troposphere during summer, particularly at middle and high latitudes.

Most probably this is due to an underestimation of the biomass burning source from

boreal forests fires in North America (Canada and Alaska). Kasischke et al. (2005)

have shown that CO emissions from boreal fires in the summers of 2001 to 2003 (the25

SPURT period) were much higher than the climatological mean used in the MATCH

simulations. Thus it is likely that MATCH underestimates CO in particular at mid and

high latitudes in summer, most strongly affected by CO emissions from boreal fires

(Yurganov et al., 2005).
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6. Conclusions

Regular measurement flights have been performed in the upper troposphere and lower

stratosphere along the western shores of Europe over a period of three years as part

of the SPURT project. Stop-over landings at generally low-duty airports in low-, mid-

and high-latitudes allow the study of seasonal and latitudinal variations of CO and O35

profiles in the background atmosphere over Europe. The seasonal and latitudinal varia-

tions of the observations are in good agreement with earlier publications discussing O3-

sonde data (Logan, 1999) and satellite borne MOPITT CO data (Pfister et al., 2004).

A comparison with simulations with the CTM MATCH indicates that the model tends

to overestimate tropospheric O3 in the winter season at all latitudes due to too strong10

stratosphere-troposphere exchange, and to underestimate photochemical O3 produc-

tion at high solar irradiance in the summer season at low latitudes. MATCH predicts

that at least 50% of the tropospheric O3 at 5.5 km originates in the stratosphere, with

generally highest contributions in the winter season at high latitudes. The agreement

between MATCH and observations for tropospheric CO is excellent, with the exception15

of high latitudes in the summer, when MATCH seems to underestimate the contribu-

tion of boreal forest fires to the CO budget. In agreement with the study by Pfister et

al. (2004) the simulations indicate that approximately 50 ppbv of CO in the troposphere

is due to photochemical production, mainly by the oxidation of CH4, and to a lesser

extent of VOCs, and that long-range transport of primary emissions from Asia is the20

most important CO pollution source over Europe.
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Table 1. Tropospheric ozone mixing ratios at 5.5 km altitude (Obs = observations; MATCH =

model results; %-Str = stratospheric contribution).

Ozone Low latitudes Mid latitudes High latitudes

5.5 km Obs MATCH %-Str Obs MATCH %-Str Obs MATCH %-Str

Spring 58±6 65±6 56 61±20 66±11 63 63±10 81±8 76

Summer 80±11 56±2 30 54±13 64±7 42 67±13 61±2 50

Fall 52±3 67±4 77 53±8 56±4 69 57±3 56±8 64

Winter 49±6 87±24 85 50±3 93±12 90 56±2 92±10 92
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Table 2. Tropospheric CO mixing ratios at 5.5 km altitude (Obs = observations; MATCH =

model results).

CO Low latitudes Mid latitudes High latitudes

5.5 km Obs MATCH Obs MATCH Obs MATCH

Spring 125±16 121±14 127±10 127±12 141±21 137±6

Summer 89±91 83±6 106±22 102±4 115±13 93±3

Fall 12±10 103±5 104±17 115±11 129±5 115±2

Winter 116±9 121±4 131±16 130±5 141±9 137±6

9083
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Fig. 1. Locations of the SPURT stop-over landings when profiles were flown. Low-latitude

locations in red, mid-latitude in green and high latitude in blue.
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Fig. 2. Altitude profiles (mean and 1σ-standard deviation for 1 km altitude bins) of observed

(red) and modelled (blue) O3. The model estimate of tropospheric O3 originating in the strato-

sphere is shown by the blue dotted line.
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Fig. 2. Continued.
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Fig. 2. Continued.
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Fig. 2. Continued.
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Fig. 3. Altitude profiles (mean and 1σ-standard deviation for 1 km altitude bins) of observed

(black) and modelled (grey) CO. CO tracers are plotted to compare the contributions of pho-

tochemical CO production from CH4 and VOCs (purple) with those by long-range transport

of primary CO emissions (fossil fuel combustion and biomass burning) from Europe (green),

North-America (red) and Asia (blue). Biomass burning contributions are plotted separately as

coloured dashed lines.
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Fig. 3. Continued.
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Fig. 3. Continued.
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Fig. 3. Continued.
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Fig. 4. CO budget calculated with MATCH at 5.5 km. Photochemical CO production is shown

in purple, long-range transport of primary CO emissions form Europe, Asia and North-America

are shown in green, blue and red, respectively. Darker (hatched) areas mark contributions from

biomass burning and biofuel use. “Rest” summarises all other CO sources in the model.
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Fig. 4. Continued.
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Fig. 4. Continued.

9095



ACPD

5, 9065–9096, 2005

O3 and CO

distributions over

Europe

H. Fischer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Fig. 4. Continued.
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